Real-Time Workshop®
Embedded Coder

For Use with Real-Time Workshop®

Modeling
Simulation

Implementation

Module Packaging Features ,,‘\The MathWorks

Version 4

LN

How to Contact The MathWorks

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Real-Time Workshop Embedded Coder Module Packaging Features
© COPYRIGHT 2004-2006 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

June 2004 Online only
October 2004 Online only
March 2005 Online only
September 2005 Online only
March 2006 Online only

September 2006 Online only

New for Version 4.0 (Release 14)

Revised for Version 4.1 (Release 14SP1)
Revised for Version 4.2 (Release 14SP2)
Revised for Version 4.3 (Release 14SP3)
Revised for Version 4.4 (Release 2006a)
Revised for Version 4.5 (Release 2006b)

Getting Started

What Is MPF? i i, 1-2
When Do I Need to Use MPF? 1-4
MPF General Operations and Specific Overrides 1-5
MPF Settingst iiiiiiiiiiiiinnnnnnns 1-6
Basic Tutorial 1-8
Creating a Data Dictionary fora Model 1-8
Defining All Global Data Objects in a Separate File 1-15
Defining a Specific Global Data Object in Its Own File ... 1-16
Changing Names of Identifiers 1-17
Changing the Organization of a Generated File 1-19
Inserting a Comment into Generated Files 1-21
Selecting the Desired MPF Procedure 1-24

Selecting and Defining Templates

2

Overview of Templates 2-2
Selecting Preexisting Templates 2-5

Generating Code and Inspecting Files 2-7
Defining Templates 2-8

Comparison of a Template and Its Generated File 2-9

vi

Managing the Data Dictionary

Contents

Overview of the Data Dictionary 3-3
Creating Simulink and mpt Data Objects 3-5
Creating Data Objects with Data Object Wizard 3-5
Comparing Simulink and mpt Data Objects 3-15
Creating Data Objects Based on an External Data
Dictionaryciiiiiiiiiiiiiiiiiii e, 3-19
Saving and Loading Data Objects 3-22
Applying Naming Rules to Identifiers Globally 3-22
Defining Rules That Change All #defines 3-24
Defining Rules That Change All Parameter Names 3-25
Defining Rules That Change All Signal Names 3-26
Creating User DataTypes 3-27
Registering User Data Types Using sl_customization.m .. 3-28
Example User Data Type Customization Using
sl_customization.m 3-30

Selecting User Data Types for Signals and

Parameters0 i 3-32
Selecting User Data Types for Simulink Signals 3-33
Selecting User Data Types for Simulink Parameters 3-36
Registering mpt User Object Types 3-39
Registering mpt User Object Types Using
sl_customizationm, 3-39
Example mpt User Object Type Customization Using
sl_customizationm, 3-41

Replacing Built-In Data Type Names in Generated

Code ... e e 3-43
Data Type Replacement Limitations 3-48
Customizing Data Object Wizard User Packages 3-49

Registering Data Object Wizard User Packages Using

sl_customization.m, 3-49
Example Data Object Wizard User Package Customization
Using sl_customizationm 3-51

Customizing with Additional Options

q |

Ensuring Delimiter Is Specified for All #Includes 4-2
Adding Custom Comments 4-3
Adding Global Comments 4-5
Using a Simulink DocBlock to Add the Comment 4-5
Using a Simulink Annotation to Add the Comment 4-7
Using a Stateflow Note to Add the Comment 4-8
Using Sorted Notes to Add Comments 4-8

Selecting Persistence Level for Signals and
Parameters i, 4-10

Managing File Placement of Data Definitions
and Declarations

5

Overview of File Placement 5-2
Priorityand Usage i, 5-3
Read-Write Priority 5-4
Global Priority i, 5-6
Remaining Priorities 5-7
Data PlacementRules 5-9
Example Settings i 5-9

vii

viii

Contents

Read-Write Exampleo .. 5-11

Ownership Example, .. 5-12
Header File Example 5-13
Definition File Example 5-15

Referenced Tables

Al

MPF Panes on the Configuration Parameters Dialog

BoxX ... e A-2
MPF Template Symbolsand Rules A-10
Rules for Modifying or Creating a Template A-16
mpt Parameter and Signal Properties A-18
Data Placement Rules and Effects A-29
NOtES ottt e e e A-37
Index

Getting Started

What Is MPF? (p. 1-2)

When Do I Need to Use MPF? (p. 1-4)

MPF General Operations and
Specific Overrides (p. 1-5)

MPF Settings (p. 1-6)

Basic Tutorial (p. 1-8)

Selecting the Desired MPF
Procedure (p. 1-24)

Explains the module packaging
features (MPF) of Real-Time
Workshop® Embedded Coder.

Provides questions to help determine
whether or not you should use MPF.

An overview of the typical tasks you
can perform using module packaging
features.

Identifies settings for all module
packaging features to be available.

Explains how to do basic MPF tasks,
using a simple model.

Identifies the main MPF procedures
that are provided in subsequent
chapters of this guide.

1 Getting Started

What Is MPF?

The Real-Time Workshop Embedded Coder generates C/C++ code for a
Simulink® or Stateflow® model. Module packaging features (MPF) extend the
code customization and formatting controls of Real-Time Workshop Embedded
Coder. It allows you to work collaboratively to develop and deploy large-scale,
multimodel control system applications. With MPF, you can control packaging
needs, with the following features:

® Package generated code into a desired number of .c/.cpp and .h files.

¢ Control the internal organization of each generated file by choosing a
MathWorks supplied template. Or, if you know TLC (Target Language
Compiler), you can modify a MathWorks supplied template or create a new
template. For example, for readability, your company may have software

standards that define where to place comments and sections of code within
files.

¢ Control whether generated files contain definitions for a model’s global
identifiers. And, if definitions exist, you determine the files in which the
code generator places them. Also, you can specify the generated files where
the code generator places global data (extern) declarations.

In addition, MPF allows you to

® Register user-defined data types.
¢ Customize comments.

¢ Locate variables in target memory where desired.

What |s MPF2

The MPF interface consists of dialog boxes, templates you can define, and the
use of M-scripts for applying these features to your application.

Renl-Time Workshop Embedded Cotler Features
Generotes Optimizes doto initiolizotion

- deterministic multirate scheduler — Reduces ROM ...
eguey Code
- single and multiple instunce /

Moduie Pockaging Featres Production-Reuty

- flooting-point code Third-Purty

C
—- -~
Softwore

Source Code

- S-function wroppers \
- ASAP2 dutu export file j Turget Memory
User-defined orgunization

- integer only tode

- HTML report

Dinlog howes, User-defined
templutes ond M-seripts

Module Packaging Features in Code-Generation Process

The term module (in module packaging features) refers to one or more models.
For example, a module might be named Fuel and the model files associated
with it might be named open_loop_ fuel.mdl and closed loop_ fuel.mdl.
Thus, "module" captures the fact that many users generate code for a
multimodel system. Using MPF, users generate code for one model at a time.
The term "packaging" refers to the ability to organize files.

When this document refers to a variable, it follows the distinction made in
C/C++ programming texts between declaring and defining. Declaring names
the variable and specifies its type, but does not allocate memory. Defining
names, specifies the type, and allocates memory for the variable. A variable is
declared in one of two ways: by placing an extern statement in a .h file or by
placing the extern statement at the top of the .c/.cpp file that references
that variable. A variable is defined in a .c/.cpp file.

1-3

1 Getting Started

When Do | Need to Use MPF?

Real-Time Workshop is the foundation for Simulink code generation. It
generates ANSI/ISO-C compliant code for an entire model or for an individual
subsystem. The code runs on any microprocessor or real-time operating
system. Real-Time Workshop Embedded Coder extends Real-Time Workshop.
It generates C/C++ code from Simulink and Stateflow models that has

the clarity and efficiency of professional handwritten code. This code is
compact in size and fast in execution time, meeting the needs of embedded
systems, on-target rapid prototyping boards, microprocessors used in mass
production, and real-time simulators. MPF extends the code customization
and formatting controls of Real-Time Workshop Embedded Coder.

Use MPF if you answer yes to any question like the following:

® Do you need to control the organization of one or more generated files?

® Do you need to control where (which file) the code generator places
definitions of global identifiers?

¢ Do you need to insert any kind of comment into a generated file?

® Do you need to control how model parameters and signals are named in
generated files?

MPF General Operations and Specific Overrides

MPF General Operations and Specific Overrides

The figure below shows an overview of some of the typical tasks you can
perform using module packaging features. First, you can create a data
dictionary for a model. The data dictionary consists of data objects that are
created from a model’s signals, parameters, data stores, and states. You can
apply one of more module packaging features to all of these data objects in
one general operation. You can also override a general operation for specific
data objects.

Some General MPF Some Specific MPF
Operufions on All Doty Objects Operations on Single Duto Objects
Pluce globol duto objects in separate file. Plocee o globul dutn object in its own file.

Insert custom ond global comments.

Creote .) -—
Dot » Chunge nomes of dotu objeets (noming

rules).

Overritle numing rules with ulins.

Dictionary

Orgunize files with remplutes,

1-5

1 Getting Started

MPF Settings

To enable module packaging features, the Configuration Parameters dialog
box must have the settings indicated in the table below:

MPF Settings

Setting on Configuration
Parameters Dialog Box

Purpose

Select Fixed-step in the Type field
of the Solver pane.

Allows you to choose one of the set
of fixed-step solvers that Simulink
provides: discrete or continuous.
Required to enable any module
packaging feature.

Select the Inline parameters check
box on the Optimization pane.

Instructs Real-Time Workshop to
embed the numerical values of model
parameters (constants), instead of
symbolic parameter names, in the
generated code. This improves code
efficiency, because the constants
become nontunable. Then, you can
specify individual parameters to be
tunable, if desired. Preferred for
MPF.

Select an ert.tlc (or a system
target file derived from an ert.tlc)
in the System target file field on
the general Real-time Workshop
pane.

Sets code generation parameters for
your embedded target. (The Target
Language Compiler generates
target-specific C/C++ code from

an intermediate description of
your Simulink block diagram
(model.rtw). The system target
file, at the top level of this program,
controls the code generation
process.) Required to enable any
module packaging feature.

MPF Settings

MPF Settings (Continued)

Setting on Configuration
Parameters Dialog Box Purpose

Clear the Ignore custom storage | Supports all custom storage classes.
classes check box. Required to enable any module
packaging feature.

Select the Include comments Makes available all other options on
check box on the Comments pane, | the Comments pane. Required to
and click the Apply button, if it is enable the adding custom comments
available. feature of MPF.

1-7

1 Getting Started

Basic Tutorial

This section explains some basic MPF tasks, using a simple model:

“Creating a Data Dictionary for a Model” on page 1-8
“Defining All Global Data Objects in a Separate File” on page 1-15

“Defining a Specific Global Data Object in Its Own File” on page 1-16

“Changing Names of Identifiers” on page 1-17

“Changing the Organization of a Generated File” on page 1-19

“Inserting a Comment into Generated Files” on page 1-21

Creating a Data Dictionary for a Model

In this procedure, you create a data dictionary for a model using the Data
Object Wizard, inspect the data dictionary, and generate code. Definitions
for the data objects in the dictionary are generated into the model source
file (model.c).

Using the Data Object Wizard

1 Open the demo model rtwdemo_mpf by clicking the link or by typing
rtwdemo_mpf in the MATLAB® Command Window.

ﬁrtwdemo_mpf *
File Edit View Smulation Format Tools Help

= E3

DSEH& $BE (2 r o e - DEBSs BEB T ®

e
A
1rig_2 j Gota

Trigger)

Ready

Invoke Data
Ohject Wizard
{Double click.)

Invoke Model Explorer

|

{Double click.)

|FizedstepDiscrate v

Basic Tutorial

In this model,
® A, B, and C are input signals, and L and Final are output signals.

® Subsystem1 receives inputs A and E, and contains constants G1 and G2.
Signal E is an output from Data Store Read1.

® Subsystem?2 receives inputs C and D. Signal D is an output from Data
Store Read2. There is a constant in Subsystem2 named G3. Also, this
subsystem has a Unit Delay block whose state name is SS.

2 Double-click the Stateflow chart and notice it has constants F1, Gain1,
and Gain2, as shown below:

) Stateflow {chart) rtwdemo_mpf/Chart i =]]
Fil= Edit Yiew Simulation Tools Add Help £

!I =

[intEl = 14]

{

out =in * Gain1 * Gain2;
g 1

}

b

4 L

‘Ready

3 Change to a work directory that is not on an installation path and save the
model in that work directory. Real-Time Workshop does not allow you to
generate code from an installation directory.

4 Double-click the Invoke Data Object Wizard button on the model. Or,
type dataobjectwizard('rtwdemo_mpf') in the MATLAB Command

1 Getting Started

1-10

Window. The Data Object Wizard opens and rtwdemo_mpf appears in the
Model name field, as shown below.

) Data Object Wizard . =10 x|

Analyzes the model specified below and finds its unresolved data
ohjects and data types that will be created

| Object Hame | Class | Package

Crieek Al | irereei A
Choose package for selected data objects: |Simu|ink >, I Apply Packane |

|M0delname: hwdemo_mpf Erowze. . |

Find options
’7|7 Root inputs [V States [Block outputs [Alias types

[V Root outputs [V Data stores [V Parameters

Firel | Createl Cancell Help I

5 Click Find on the Data Object Wizard. After a moment, the model’s
parameters and signals appear in the Data Object Wizard. These "data
objects" make up the data dictionary.

6 Click Check All, to select all data objects for the data dictionary.

7 In the Choose package for selected objects field, select mpt. For an
explanation of “package,” see “Overview of the Data Dictionary” on page 3-3.

Basic Tutorial

8 Click Apply Package. The Data Object Wizard associates the selected
data objects with the mpt package, as shown below.

) Data Dbject Wizard]
Unresolved data objects and data types found in analyzed rmodel
Select each data ohject and data type you wish to create for the
model: rwdemo_mpt

| Object Hame | Class | Package
s Sighal it
=] Sigral it
Wlc Signal mpt
D Signal mpt
Wos Signal mpt
¥|E Sighal it
[+ Finsl Sighal it
WL Signal mpt
55 Signal mpt
¥ F1 Parameter it
¥ Parateter tipt
WGz Parammeter it
I e Parameter trpt
v || Gair Paratmeter it
[+ Gain2 Parameter gt

Check Al I Uncheck &l

Choose package for selected data objects: Impt - I i
Model name: hwdemo_mpf Erowwze |

Find options
’7|7 Root inputs [V States [Block outputs ¥ Alias types

[V Roct outputs [V Data stores [V Parameters

Firel | Createl Cancell Help I

1-11

1 Getting Started

9 Click Create. The Data Object Wizard creates a data dictionary, consisting
of data objects for the selected parameters and signals. The Data Object
Wizard removes the objects from its object view. Also, the objects are added
to the MATLAB workspace, as shown below.

<L MATLAB -0l x|
Fle Edt Wiew Graphics Debug Deskiop Window Help

0O & ‘ BB o o |ﬁ ﬂl P | Currert Directory: | CrworkiR 45P1 bork =1 J

Shortcuts [How to Add 2] What's New

‘Workspace FREY] [Command window 7 x

B E® %S| e[| s
|Name L Velue | Class

<1x1 mpt.Signal> mpt.Signal
<1l mpt.Signal> it Signal
<1x1 mpt.Signal> mpt. Signal
=Tx1 mpt.Signal> mpt.Signal
<1x1 mpt.Signal> mpt.Signal
<1x1 mpt.Signal> it Signal
<11 mpt.Parame... mpt.Parameter
<1x1 mpt.Signal> mpt.Signal
<11 mpt.Parame... mpt.Parameter
<11 mpt.Parame... mpt.Parameter
=11 mpt.Parame... mpt.Parameter
<1x1 mpt.Parame. . mpt. Parameter
<11 mpt.Parame... mpt.Parameter
<1x1 mpt.Signal> mpt.Signal
=Tx1 mpt.Signal> mpt.Signal

To get started, select MATLAE Help or Demos from the Help menu.

»» datacbjectwizard |'rtwdemo_mpf.mdl')
e

]
Currert Directory |
Command History 7 x
TSI T e T
%-- 9/22/04 12:39 PH —-%
L datasbiectwizard | rtudemo_mpf.dl') ~
4 »+ :I:
Hston| 4

10 Close the Data Object Wizard.

Inspect the Data Dictionary

You can verify that each data object you selected in the Data Object Wizard is
in the data dictionary, using the Model Explorer:

1 Open the Model Explorer.

2 In the left pane, select Base Workspace. Notice that all data objects that
you placed in the data dictionary appear in the middle pane.

1-12

Basic Tutorial

3 In the middle pane, select data objects one at a time, and notice their

property values in the right pane. The figure below shows this for signal A.
All of the data objects have default property values. Note that for an mpt
data object, the default in the Storage class field is Global (Custom). For
descriptions of the properties on the Model Explorer, see Parameter and
Signal Property Values on page A-19.

F® Model Explorer

File Edit Wew Tools Add Help

=10l

|ossmax BHEc%HF fo8 On 45| awmz A

HSealch |by Block Type ;I Type: |Eonstant ;l Search

Model Hierarchy Contents of. Base Warkspace mpt.Signal: A
&+ EfSimedns Foo [Mame © [Velus|DataTyp|| Dalatipe: [dovible =] unis =
1 Base Workspace double || Dimensions: |1 Complesity: | auto |
+ tua J
B T thawdemo_mpl auto Sample time: [Sample mode: | auto |
auto Mirimum: — [-nf M. [Inf
auto
Initial walue: l—
auto
auto i~ Code generation optian:
2 ame Storage class:| Glebal (Custom) E
auto Custam attribut
I
P o Memony section: | Defaul =
auto Header file: |
5 auta Owner: |
3 ade Defirition file: |
adta Persistence level |1
auto
Alias | e
Description:
‘ i | B
4 | »][| Centents | Search Resuls il LR} il |

RS

Generate and Inspect Code

1 In the left pane of the Model Explorer, expand the rtwdemo_mpf node.

2 In the left pane, click Configuration (Active).

3 In the center pane, click Real-Time Workshop. The active Real-Time

Workshop configuration parameters appear in the right pane.

4 Click the General tab.

1-13

1 Getting Started

5 In the General pane, select Generate HTML report and Generate code
only, and then click Generate code. After a few moments, the names
of the generated files are listed on the Real-Time Workshop Report, as
shown below.

[S1Real-Time Workshop Report 3 5[] 3|

] owea] Code Generation Report

Contents

S e for rtwdemo_mpf

Subsystems
Code mapping Summary
Code reuse exceptions
Generated Source Files Real-Time Workshop code generated for Simulink model "riwdemo_mpf mdl™.
eff_main.c
rwclema_mpf.c i
rtwiclerno,_mpfh Model .\/er5|on . 176

rwderno_mpf_private h Real-Time YWorkshop version: 6.3 (R145P3 TC1) 14-Jul-2005
rwiderno_mpf_types h C source code generated on © Tue Jul 26 16:38:36 2005
rowtypes h

Configuration Settings at the Time of Code Generation: click to open

List of inserted blocks

0K I Cancel | Help | Apply |

6 Open and inspect the content of the model source file rtwdemo_mpf.c. The
data objects in the data dictionary are defined in this file.

real_ T A
real_T B;
real T C
real_ T D
real T DS;
real T E;
real T Final;
real T L;
real T SS;
real T =2
real T G1 = 6.
real_ T G2 = -2.6;
real T G3 = 9.0;
real T Gain1l = 5.0;
real T Gain2 = -3.0;

n
—_
|

1-14

Basic Tutorial

Defining All Global Data Objects in a Separate File

The previous procedure placed all of the model’s data objects in the model

source file. Now you place all of the global data objects in a file separate
from the model source file:

1 In the center pane of the Model Explorer, select Real-Time Workshop.
2 In the right pane , select theData Placement tab.

3 Set Data definition to Data defined in single separate source
file and accept the default for Data definition filename, global.c.

F& Model Explorer =] B3]
File Edit Wiew Tools Add Help
D/ inmx EMc%Ef 0004k awmz A
Search: [by Block Type =] Tupe: [Chat =] & Seach e |
Model Hieraichy Contents of: rtwdema_mpf/Configuratior || Aeal-Time Workshop
=-[ET]Simuiink Rioot [Name [StapTime [Save | Custom Code | Debug | Intertace | Templates | Data Placement | Data Type Replacement |< b
3 ;E“EW“’“W“E & Saver 1 Global data placement [custom storage classes onl
1 Bl twdema_ripf*
Mootk # Data Import/Eport 0 Dt definion Data defined n 4 single separate source fie =]
i Model Workspace & Optimization
- SfpCorfguation otvel | piaorastics Data definiion filename: alobal
b Code for tdema 0 | - ol Data declaration Aulo
% Advice for twdemo_mpt

& Model Referencing Hinclude file defimiter: | Auto i
- EilBuid ERT £ RealTime Wark.

o :S{Ewld ERTY Global data placement [MPT data obiects only)
%{i:md‘am Hockie | ing Nt specified =
- By Chan
e — Signal display level [0 Poarsmeter tun lsvet [0
[P ata Object Wizard Source of inital valses: | Modsl =l
=
[Falsubsystenz

W Generste code only Generate code

e | |
Contents | Search Fresults | LD

Apply |

VA

4 Set Data declaration to Data declared in a single separate header

file and accept the default for Data declaration filename, global.h.
Then, click Apply.

5 Click Generate code. Notice that the code generation report lists
global.c and global.h files.

1-15

1 Getting Started

1-16

6 Open global.c and rtwdemo_mpf.c. Notice that
® The data objects are defined in global.c and not in rtwdemo_mpf.c.
¢ The file rtwdemo_mpf.c includes rtwdemo_mpf.h.

e A #include "global.h" statement appears in the file rtwdemo_mpf.h.

Defining a Specific Global Data Obiject in Its Own File

The previous procedure placed all global data objects in a separate definition
file, in one operation. You named that file global.c. (You named the
corresponding declaration file global.h.) MPF allows you to override this and
place a specific data object in its own definition file. In this procedure, you
move the Final signal to a file called finalsig.c, and keep all the other data
objects defined in global.c:

ylobol.c ylobol.h

real T A = 0.0;
real TB=0

extern real T A;
extern real T B;
extern real T C;
extern real T D;
extern real T DS;
extern real T E;

—Hextern real T Finmal;
extern real T L;

Right Most Pane of Motel Explorer Dinlog
mpt.Signul Fingl

Generote
Code

extern real T G3;
extern real T Gaini;
extern real T GainZ;

real T Gaiml
real T Gain2

-0;

T 1 TS5 =0.0; .
Definitio] > real_ i extern real T S5;
real T F1 = 0.0; extern real T F1;
reaiﬁI g; = 13’ extern real T G1;
real - =1.0; !
real T 63 = 1.0; extern real T G2;

0.

0

finulsig. e finulsig.h

> o] L

1 In the Model Explorer, display the base workspace and select the Final
signal object. The mpt.Signal properties appear in the right pane.

extern real T Final;

2 In the Code generation options section, type finalsig.c in the
Definition file text box, and click Apply.

3 Display the active Real-Time Workshop configuration parameters.

4 In the right pane, click Generate code. The code generation report still
lists global.c and global.h, but adds finalsig.c.

Basic Tutorial

5 Open all four files to inspect them. Notice that the Final signal is defined
in finalsig.c. All other data objects in the dictionary are defined in

global.c.

Changing Names of Identifiers

This procedure changes the names of all signal identifiers, except one, so that
they are spelled with all lowercase letters. For example, A in the definition

statement located in global.c is changed to a. The one exception is the
Final signal in the finalsig.c file. You change this identifier name to

Final Signal. The names of the rest of the identifiers in the generated files
remain the same:

1 In the center pane of the Model Explorer, click Real-Time Workshop.

2 In the right pane, click the Symbols tab.

3 In the Simulink data object naming rules section, set Signal naming
to Force lower case, and click Apply.

B Model Explorer

File Edit View Tools Add Help

D/ @X ENE%HF fo0@n 48 v m=A)

E-[E9] Simuiink Root
i Base workspace
(= Tl rtwclemno_mpf*
- i Model workspace
“@aConfiguration [Active]

[2]Build ERT
[¥]Build ERT1

- Build GRT

- TaChart

Copyright

Data Obiect Wizard
Subsystem

EEEE

Subsystem2

-k Cade for twdema_mpf
- % Advice for thwdema_mpf

Search: [by Block Type x| Type: [Chart | g Search
Madel Hisraichy Contents of: twdema_mpf/Configuratior || Real-Time Workshop

Thame [StoaTime [Save | | Svrmboks ICustumEode | Debug | Intetace | Templates | DataPlacement | Data Type Repl 4 | v
& Solver 1 {o-generated idenliier naming rul
Data Imporl/Export r Bt SN
£ Optimization o e 0
& Dingrostios inimum mangle length:
£ Hardare Inple Masirnum identiier length El
& Modsl Asferencing Generate scalar inlined parameters as: | Literake k4|
£ FleakTime Work
~Sirwlink data abject naming rule
Signal naming: Force lower case | I
aiameter naming: | None |
Hdefine naming: | None =
.
W Generate code only Generate code
o |
Contents | Search Results Fievert Fpply |

4 Display the base workspace and select Final.

1-17

1 Getting Started

5 In the right pane, type Final Signal in the Alias text box, then click
Apply.

 Model Explorer =1olx|

File Edit View Tools Add Help

D b alXx BHEWHF o0 @n4n|ywrmu=a

Search: [by Block Type | Tope: [Chart = Search |
Model Hieraichy Contents of: Base Workspace mpt.Signal: Final
=[] Simuink Fioat TName 7 [DataType [Bine | Datatvpe: [double =] units. [=
~ WjiBase Waorkspace = double 1 Dimensions: [1 Complesity. | auto =i
= Tl rtwdemo_mpf =5 double 1 Sampie fime: [1 Sample mode: | auto |
¥ Modsl workspace =c double -1
4y Configuation lactivel || £ o ble q [M e team |
& Code for twdemo_mpf || = e double -1 ||| Cede generation option:
% Advice for mwdemo_met || & ¢ double -1 Storage class: | Giobal (Custom) |
%{Emld ERT auto i Custom attribu
- P {Buid ERT1
double -1 i -
ot oRT o . Memary section: | Default =l
Bchat it P Header file:
- FB{Copyright auto 1 Owner:
[F8]Data Object Wizard auto [Definition fle:
[o]Subsysteml ain2 auto n1 Persistence levek |1
- Fz]Subsystem2 double 1
—
double 1 || s [Firal_Sigral | =
Inital vahie:][]
Description:
™ =
Contents [Search Rasuts e || SR pos_ |

6 Display the active Real-Time Workshop configuration parameters.

7 Click Generate code. Now the signal identifiers in global.c and
global.h appear with lowercase letters.

- a a0

real T F1
real T G1 =
real T G2 =
real T G3 =
real T Gaintl =

o O oo

O O -
o o

real T Gain2 = ;
real T a;
real T b;
real T c;
real T d;
real T ds;
real T e;
real T 1;
real T ss;

1-18

Basic Tutorial

The statement defining the Final signal in finalsig.c looks like this:

real T Final_Signal;

The statement declaring this identifier in finalsig.h looks like this:

extern real_T Final_Signal;

Changing the Organization of a Generated File

The files you generated in the previous procedures are organized according to
the general template that Real-Time Workshop Embedded Coder provides.
This template has the filename ert_code_template.cgt, and is specified by
default in templates panes of the Configuration Parameters dialog box.

F& Model Explorer

File Edit View Tools Add Help

=1olx|

De/inmx EME%HF 00 04k awmz A

&h Code for rtwdemo_mpf
% Advice for twdemo_mpt
~FEBuild ERT
- FHBuid ERTY
[¥Build GRT
~ BaChat
- | Copyright
[F8]D ata Dbject Wizard
[Fefsubsyster
]

Subsystemz

£ Hardware Imple

| |

Model Referencing
@ RealTime Wark...

Contents | Search Results

Search: [by Block Type | Type: [Chart | Dg“ Search
Model Hierarchy Contents of: itwdemo_mpf/Configuratior ||Real-Time Workshop
=[] Simuiink Root [Name [StopTime [Save | General | Comments | Symbols | CustomCode | Debug | Inteiface | [Templates] IData Flace « | »
- BiBase workspace @ Salver 1 ~Code templ
1 Bitwdema_rap 4 Data Impor/Export r S s ltempae: [sodEompAE ot 5 =
B Modsl Workspace P ouice fie [“.c) template: [ert_code_template. co! rowse. i
~“GpConfiquration (Active] || 0, Diagrastics Header fle ") template: [ert_code_template. cgt Browse.. Edi,

—Data templat

Souice fie [%.c] template: [ert_code:_template oot

Header file ') tamplate: [ent_code_template. cat

Browse. Edit
Browse... Edi

-~ Custom templat

Fills customization template: [example_fle_process tlc

[¥ Generale an example main program

Browse. Edit

Target operating syster: | BareBoardExample

= |

[¥ Generate code anly

- s

Revert

Help

Generate code

Apply

v

1-19

1 Getting Started

The following fragment illustrates the organization that results from using
this default template:

/*
* File: rtwdemo_mpf.c

*

* Real-Time Workshop code generated for ... model rtwdemo_mpf.

"

* Model version: 1 1.36

* Real-Time Workshop file version : 6.0 (R14) 5 May-2004

* Real-Time Workshop file generated on : Wed Aug 18 17:27:20 2004
* TLC version : 6.0 (Apr 27 2004)

* C source code generated on : Wed Aug 18 17:27:22

You can change the organization of generated files using code templates and
data templates. Code templates organize the files that contain functions,
primarily. Data templates organize the files that contain identifiers. In this
procedure, you organize the generated files using the supplied MPF code
template and data template:

1 Display the active Real-Time Workshop Templates configuration
parameters.

2 In the Code templates section of the Templates pane, type
code_c_template.cgt into the Source file (*.c) templates text box.

3 Type code_h_template.cgt into the Header file (*.h) templates text box.

4 In the Data templates section, type data_c_template.cgt into the
Source file (*.c) templates text box.

5 Type data_h_template.cgt into the Header file (*.h) templates text
box, and click Apply.

1-20

Basic Tutorial

6 Click Generate code. Now the files are organized using the templates you
specified. For example, rtwdemo_mpf . c now is organized like this:

/**

EEEEEEE SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESE
** FILE INFORMATION:

** Filename: rtwdemo_mpf.c

** File Creation Date: 18-August-2004

* %

** ABSTRACT:

* %

* %

Inserting a Comment into Generated Files

MPF provides a variety of ways to enter comments in the generated files, as
explained in Chapter 4, “Customizing with Additional Options”. In this final
step of the basic tutorial, you place a Simulink annotation on the model so
that it also appears as a comment in the "NOTES" section of a generated file.

Recall the templates that you specified in the previous procedure. Below is a
list of generated files and templates used to organize them:

Generated File Template Used

finalsig.c data_c_template.cgt
global.c data_c_template.cgt
rtwdemo_mpf.c code_c_template.cgt
global.h data_h_template.cgt
rtwdemo_mpf.h code_h_template.cgt

1-21

1 Getting Started

Of the templates you used, only the code _c_template.cgt file has the
<%Notes> template symbol, as shown in the file fragment below:

/**

EEE R R EE R SRR EEE S
** FILE INFORMATION:

** Filename: %<FileName>

** File Creation Date: %<Date>

* %

** ABSTRACT:
<%Abstract>

* %

** NOTES:

%<Notes>

* %

** MODEL INFORMATION:

** Model Name: %<ModelName>

This template was used to organize rtwdemo_mpf.c. So the annotation you are
about to add using the <%Notes> template symbol will appear in this file only.

1-22

Basic Tutorial

1 Double-click the unoccupied area on the model where you want to place the
annotation, and type the following, as shown in the figure below:

<S:Notes>This is the annotation I want under NOTES.

E!rtwdemo_mpf [_ O]]

File Edit View Simulation Format Tools Help

DIBEE&|+ER 2y sfn Jum - BHBEd REBET®

aut T - 2
ea -
Invoke Data

g _2— - — -
P g Object Wizard
{Double click.)

Triggen()
@ A > Invoke Model Explorer

(Double click.)
(e —»
Gotol Framd
_ o Subzystem Hr
: Wt
From ¥ R
Trigger(y
B

From2 ey

CG g

<5:Notes=This is the annotation | want under NOTES.

Subsystemnz
Ready [100% [[T=0.00 |[FixedstepDiscrate

Nl

2 Click outside the annotation rectangle and save the model.

3 Generate code. The annotation appears under NOTES, in rtwdemo_mpf.c:

** FILE INFORMATION:
** Filename: rtwdemo_mpf.c
** File Creation Date: 18-August-2004

* %

** ABSTRACT:

* %

** NOTES:

This is the annotation I want under NOTES.
** MODEL INFORMATION:

** Model Name: rtwdemo_mpf

1-23

1 Getting Started

Selecting the Desired MPF Procedure

The following chapters document MPF tasks in detail:

Chapter 2, “Selecting and Defining Templates”

Chapter 3, “Managing the Data Dictionary”

Chapter 4, “Customizing with Additional Options”

Chapter 5, “Managing File Placement of Data Definitions and Declarations”

1-24

Selecting and Defining

Templates

Overview of Templates (p. 2-2)

Selecting Preexisting Templates
(p. 2-5)

Defining Templates (p. 2-8)

Explains what a template is.

Explains how to select default
templates or user-defined templates
that already exist.

Explains how to create a new
template or edit an existing
template.

2 Selecting and Defining Templates

Overview of Templates

You can select and define (create) templates so that the code you generate is
organized the way you want. A template defines exactly where all parts of a
generated file’s contents will be placed. Then, when you instruct Real-Time
Workshop Embedded Coder to generate code, it will organize all generated
files according to the templates you selected.

The table below lists all of the files that Real-Time Workshop

Embedded Coder generates, and the supplied MPF templates that

organize them. The MPF template files are code_c_template.cgt,
code_h_template.cgt, data c_template.cgt, and data h template.cgt.
(The ert_code_template.cgt file is the default template that Real-Time
Workshop Embedded Coder provides. The example file process.tlc file is
the custom template, referenced below.)

Generated Files and Templates That Organize Them

example_

ert code | code ¢ |code h_ |data c. | data h_ | file_
Generated template.| template, template. template. | template.| process.
File cgt cgt cgt cgt cgt tlc
your_code.c fileor |x X X
files
your_code.h file X X X
your_data.c file X X b
your_data.h file X X b

Template files are grouped into three types: code, data, and custom.

A code template organizes all of the generated files that, primarily, contain
functions but not identifiers. The source code template organizes C/C++ code
files. These include, for example, the main .c or any of the .c files that
contain functions that Real-Time Workshop Embedded Coder generates for
the open model.

Overview of Templates

The quantity and filenames of these .c files are based on the function
partitioning selected in Simulink for the model. See “Nonvirtual Subsystem
Code Generation” in the Real-Time Workshop documentation and “Generated
Code Modules” in the Real-Time Workshop Embedded Coder documentation.

There will always be at least one .c file generated that contains the model’s
functions. The code generator uses the source code template that you select
to organize all of the function .c files, regardless of how many there are for
this model. The header code template, on the other hand, organizes the .h
file that includes the prototypes of these functions.

A data template organizes all of the generated files that contain only
identifiers (data), not functions (code). The source data template organizes
the .c file that contains definitions of variables of global scope. The header
data template organizes the .h file that can contain declarations to those
definitions.

A custom template is a TLC callback script that allows you to customize
generated code. A custom template lets you
® Generate virtually any type of source (.c) or header (.h) file.

® Organize generated code into sections (such as #include preprocessor
directives, typedef statements, functions, and more).

® Generate code to call model functions such as model_initialize and
model_step.

® Generate code to read and write model inputs and outputs.

® Generate a main program module.

® Obtain information about the model and the files being generated from it.
The supplied (default) code template is example file process.tlc. You
must uncomment a TLC line, as explained near the top of the file, to apply

the script to generated code. You can modify example file process.tlc
to create your own custom template.

2 Selecting and Defining Templates

The chapter has two main subprocedures:

® “Selecting Preexisting Templates” on page 2-5 describes how to select
preexisting code and data templates.

® “Defining Templates” on page 2-8 describes how to create your own code or
data templates.

For details describing the custom template, see the discussion of “CFP
Template Structure” in the Real-Time Workshop Embedded Coder
documentation.

Selecting Preexisting Templates

Selecting Preexisting Templates

The following figure shows the Templates pane of the Configuration
Parameters dialog box, as it appears in the Model Explorer.

Real-Time Workshop
General | Comments I Symbalz | Custam Code | Diebug | Interface | Caode Style | Templates I D.<|b

—Code templates

Source file [*.c] template: Iert_code_template.cgt Browse. .. Edit...
Header file [* k] template: Iert_code_template.cgt Browse. .. Edit...

— D ata templat
Source file [*.c] template: Iert_code_template.cgt Browse... | Edit... |
Header file [* h] template: Iert_code_template.cgt Browse... | Edit... |

— Custom templates

File customization template:Ie:-cample_file_process. t Browse... | Edit.. |

¥ Genetate an example main program

Target operating systenm: I BareBoardExample ;I

[~ Generate code only

Fiewert |

The fields on this pane allow you to specify template files that Real-Time
Workshop Embedded Coder uses to organize the generated .c/.cpp and .h
files.

To modify template options.

1 Open the Configuration Parameters dialog box or Model Explorer.

2 Select the Real-Time Workshop > Templates pane. For an explanation
of fields on this pane, see “MPF Panes on the Configuration Parameters
Dialog Box” on page A-2.

2-5

2 Selecting and Defining Templates

2-6

Note The default MPF templates are located in
matlabroot/toolbox/rtw/targets/ecoder. User-modified template
files must be located in the current MATLAB working directory or in
the MATLAB path.

3 In the Source file (*.c) template field of the Code templates pane, enter
the desired filename. Real-Time Workshop Embedded Coder uses this
file to organize the .c/.cpp file or files that contain the source code for
the model’s functions.

4 In the Header file (*.h) template field of the Code templates pane, enter
the desired filename. Real-Time Workshop Embedded Coder uses this file
to organize the .h header file that contains the model’s function prototypes.

5 In the Source file (*.c) template field of the Data templates pane, enter
the desired filename. Real-Time Workshop Embedded Coder uses this
file to organize the .c/.cpp file that contains the definitions of variables
of global scope.

6 In the Header file (*.h) template field of the Data templates pane, enter
the desired filename. Real-Time Workshop Embedded Coder uses this
file to organize the .h file that contains declaration statements (extern,
typedef, #define).

If you want to use a custom template, follow the “Custom File Processing”
instructions in the Real-Time Workshop Embedded Coder documentation.
Otherwise, proceed to the next step.

7 Click Apply to save all your choices on the pane and keep it open. (Clicking
OK saves the choices but closes the pane.)

Now you can generate code using the selected template files.

Selecting Preexisting Templates

Generating Code and Inspecting Files

You have selected the desired templates. Now you can generate code and
inspect the files to ensure they are what you want:

1 On the Configuration Parameters dialog box, click Real-Time Workshop
on the left pane.

2 In the Documentation pane, select the Generate HTML report check
box.

When you select the Generate HTML report check box, Real-Time
Workshop Embedded Coder automatically selects the two check boxes
under it: Include hyperlinks to model and Launch report after code
generation completes. For large models, you may find that HTML report
generation takes longer than you want, after performing step 4 below. In
this case, consider clearing the Include hyperlinks to model check box.
The report will be generated faster.

3 On the Configuration Parameters dialog box, select the Generate code
only check box. The Build button changes to Generate code.

The generate code process generates the .c and .h files. The build process
adds compiling and linking to generate the executable. For details on
building, see “Build Process” in the Real-Time Workshop documentation.

4 Click the Generate code button. After a moment, Real-Time Workshop
Embedded Coder creates all files according to the Simulink partitioning for
the model. It organizes each file according to the respective template you
have chosen. The HTML report appears, listing the generated files on the
left pane (under Generated Source Files).

5 To inspect a file, click its filename on this window.

6 If you want a file to be organized using a different existing template, close
the file, and repeat the relevant steps in “Selecting Preexisting Templates”
on page 2-5.

7 If you want to change a template, or create a new one, close the file, and
follow “Defining Templates” on page 2-8.

2 Selecting and Defining Templates

Defining Templates

Follow this procedure to create a new template or edit an existing template.
When creating a new template, we recommend that you modify its
supplied template and save it with a new filename. Templates have the
extension .cgt, which stands for "code generation template." A default

path to templates is created during installation in the MATLAB folder:
toolbox/rtw/targets/ecoder. So templates are located there (unless you
changed this path). For a filename typed in a template field on the Templates
pane to be selected, the file must be in either the current MATLAB work
directory or on the MATLAB path. For an example that compares a template
with its associated generated file, see “Comparison of a Template and Its
Generated File” on page 2-9:

1 Open the Configuration Parameters dialog box and select Templates on
the left pane. The Templates pane now appears on the right, like that
shown in the section “Overview of Templates” on page 2-2.

Each Stateflow or Simulink model can have up to five types of templates
from which .c or .h files are generated. These templates are accessible
on this pane. Generated Files and Templates That Organize Them on
page 2-2, identifies all the files that Real-Time Workshop Embedded
Coder generates and the supplied templates that organize each file. MPF
Elements on Configuration Parameters Panes on page A-2, describes the
supplied code templates and data templates.

2 To edit a code or data template, first type its filename in the desired
template field on the Templates pane, or select it using the Browse
button. Then click Edit. The file opens in an editor.

The location of a template symbol in one of the MPF template files
identified in Generated Files and Templates That Organize Them on page
2-2 determines where the items associated with the symbols are located
in the generated file, according to certain rules.

3 Modify (edit) the template file as desired, while consulting the following:
¢ Template Symbol Groups on page A-10
¢ Template Symbols on page A-12
e “Rules for Modifying or Creating a Template” on page A-16

Defining Templates

4 Perform a Save or Save As operation, naming the template file as desired.
Performing a Save operation on an existing template file will replace
the original. This is desirable if your intent is to update an existing
user-defined template. If you are modifying a supplied template, perform
a Save As operation, not a Save.

5 Follow “Selecting Preexisting Templates” on page 2-5, selecting the
template you just defined.

6 Click Generate Code.
7 Inspect the generated file or files to see how the template organized them.

8 Repeat this procedure only if the organization of the generated file or files
is not acceptable.

Note Practice is the best way to learn how a user-defined template affects
the organization of a generated file. Create a template. Generate code.
Compare the two. Repeat this process to see the results that changes on
the template have on its respective generated file or files.

Comparison of a Template and Its Generated File

The next figure shows part of a user-modified MPF template and the resulting
code generated by the Real-Time Workshop Embedded Coder. This figure
illustrates how you can use a template to

® Define what code the Real-Time Workshop Embedded Coder should add
to the generated file

e Control the location of code in the file

® Optionally insert comments in the generated file

Notice %<Includes>, for example, on the template. The term Includes is a
symbol name. A percent sign and brackets (%< >) must enclose every symbol
name. You can add the desired symbol name (within the %< > delimiter) at a
particular location in the template. This is how you control where the code
generator places an item in the generated file.

2 Selecting and Defining Templates

2-10

Template and Generated File

Portion of
Example Template Corresponding Portion of Generated File
/*#INCLUDES*/ 26 /*#INCLUDES*/

%<Includes> ()> T | 27 #include "rtwdemo_codetemplate.h"
/*#DEFINES*/ 2 28 #include "rtwdemo_codetemplate_private.h"
%<Defines> ()> None 29
#pragma string 1. (3) _— 2(1) Q#DEFINES*/ .
{’/IZEDFINI"ITIONS / (4)> - fpragma string X

b<Definitions> 32 /*DEFINITIONS*/

#pragma string2 (5) 33 /* Block states (auto storage) */
%<Declarations> (6) gzsl rtDWork;
%<Functions>
@ 36 /* External output (fed by signals with auto storage) */
37 rtY;
38
39 /* Real-time model */
40 1tM_;
41 *rtM = &rtM_;
42 #pragma string2
43

None — 44 /* Model step function */
45 void rtwdemo_codetemplate_step(void)

47
48 /* local block i/o variables */
49

50 rtb_Switch;
51 rtb_RelOpt;
52

53 /* Sum: " incorporates:
54 * UnitDelay: "

55
56 rtb_Switch = ()(()rtDWork.X + 1U);
57

58 /* RelationalOperator: " */
59 rtb_RelOpt = (rtb_Switch != 16U);
6

0
61 /* Outport: " */
62 rtY.Out = rtb_RelOpt;
63

64 /* Switch: " */

65 if(rtb_RelOpt) {
66 } else {

67 rtb_Switch = 0U;
68}

69

70 /* Update for UnitDelay: " */
71 rtDWork.X = rtb_Switch;

72

73 /* (no update code required) */
74}

Defining Templates

How the Template Affects Code Generation

This part of the template...

Generates in the file...

Line

Description

Explanation

(D

/ *#INCLUDES*/
%<Includes>

26-28

An /*#INCLUDES*/
comment, followed
by #include
statements

The code generator adds

the C/C++ comment as a
header, and then interprets

the %<Includes> template
symbol to list all the necessary
#include statements in the file.
This code is first in this section
of the file because the template
entries are first.

(2)

/*DEFINES*/
%<Defines>

30

A */DEFINES*/
comment, but no
#define statements

Next, the code generator places
the comment as a header for
#define statements, but the file
does not need #define. No code
is added.

3

#pragma stringi

31

(%)

#pragma string2

42

#pragma statements

While the code generator
requires %<> delimiters for
template symbols, it can also
interpret C/C++ statements in
the template without delimiters.
In this case, the generator adds
the specified statements to the
code, following the order in
which the statements appear in
the template.

4)

/#DEFINITIONS*/
%<Definitions>

32-41

/*#DEFINITIONS*/
comment, followed
by definitions

The code generator places

the comment and definitions
needed in the file between the
#pragma statements, according
to the order in the template.
It also inserts comments (lines
33 and 36) that are preset

in the model’s Configuration
Parameters dialog box.

2-11

2 Selecting and Defining Templates

How the Template Affects Code Generation (Continued)

This part of the template... | Generates in the file... Explanation
Line Description
(6) | %<Declarations> 43 No declarations The file needs no declarations,

so the code generator does not
generate any for this file. The
template has no comment to
provide a header. Line 43 is left
blank.

(7) | %<Functions> 4474 Functions Finally, the code generator adds
functions from the model, plus
comments that are preset in
the Configuration Parameters
dialog box. But it adds no
comments as a header for the
functions, because the template
does not have one. This code is
last because the template entry
is last.

For a list of template symbols and the rules for using them, see Template
Symbol Groups on page A-10, Template Symbols on page A-12, and “Rules
for Modifying or Creating a Template” on page A-16. To set comment options,
from the Simulink menu, select Configuration Parameters > Real-Time
Workshop > Comments. For details, see “Configuring Real-Time Workshop
Code Generation Parameters” in the Real-Time Workshop documentation.

2-12

Managing the
Dictionary

Data

Overview of the Data Dictionary
(p. 3-3)

Creating Simulink and mpt Data
Objects (p. 3-5)

Saving and Loading Data Objects
(p. 3-22)

Applying Naming Rules to
Identifiers Globally (p. 3-22)

Creating User Data Types (p. 3-27)

Selecting User Data Types for
Signals and Parameters (p. 3-32)

Describes the data dictionary
created for Simulink and Stateflow
models (the "code generation data
dictionary").

Explains how to add Simulink
and mpt data objects to the code
generation data dictionary.

Explains how to save the set of data
objects (and their properties) that
you have created so that you can
load them for subsequent use.

Explains how to change the case
or spelling of all identifier names
according to the same rule, when
code generation occurs.

Explains how to register user-defined
data types so they can be associated
with the corresponding MathWorks
C/C++ data types.

Explains how to select registered,
user-defined data types for signals
and parameters.

3 Managing the Data Dictionary

Registering mpt User Object Types
(p. 3-39)

Replacing Built-In Data Type Names
in Generated Code (p. 3-43)

Customizing Data Object Wizard
User Packages (p. 3-49)

Explains how to register one or more
sets of user-defined properties and
property values that can be applied
automatically to user data objects as
desired.

Explains how to replace built-in
data type names with user-defined
replacement data type names in
generated code.

Explains how to register Data
Object Wizard (DOW) user package
customizations.

Overview of the Data Dictionary

Overview of the Data Dictionary

A data dictionary contains all of the parameters and signals that the source
code uses, and a description of their properties. The data dictionary that

is created for Simulink and Stateflow models is called the code generation
data dictionary. (You can use the data dictionary for simulation. This does
not require that you have a Real-Time Workshop Embedded Coder license.)
The dictionary is the total number of data objects that appear in the middle
pane of the Model Explorer. These data objects also appear in the MATLAB
workspace. The procedure described in this chapter allows you to create or
edit the dictionary. The procedure allows you to control property values for
each data object. This, in turn, determines how each parameter and signal is
defined and declared in the automatically generated code.

The values of data object properties can affect where the code generator places
a parameter or signal in the generated file. This is because some property
values are associated with different template symbols. The location of a
symbol in a template determines where the associated parameter or signal is
located in the generated file. For details about templates and symbols, see

Chapter 2, “Selecting and Defining Templates”.

It is helpful to define terms you will see when managing the dictionary,
especially when you view them using the Model Explorer. In Simulink, there
is a hierarchy of terms that are drawn from object-oriented programming. For
details, see “Working with Data Objects” in the Simulink documentation. The

sketch below summarizes this hierarchy.

Package

P = Property

PV = Property Value

3 Managing the Data Dictionary

Simulink or mpt is the package. Parameter and Signal are two classes in each
of these packages. Each class has a number of properties associated with it.
Sometimes properties are called attributes. Data objects (the parameters

and signals) are the instances of a package.class that make up the data
dictionary. All parameter data objects have a set of properties. All signal
data objects have a different set of properties than that for parameters. For
each data object, each property in the set has its own property value that
must be specified in the dictionary.

Note In this document, "signal" refers to a named wire on a Simulink model,
a discrete state, or a data store.

Creating Simulink and mpt Data Obijects

Creating Simulink and mpt Data Objects

There are different ways of creating Simulink and mpt data objects for a
data dictionary.

® One-by-one, either using the MATLAB command line or using the Model
Explorer Add menu and selecting Simulink Parameter, Simulink
Signal, MPT Parameter, or MPT Signal. For more information, see
“Working with Data Objects” in the Simulink documentation.

e All at once, invoking the Data Object Wizard for an existing model. For
more information and examples, see Data Object Wizard in the Simulink
documentation and “Creating Data Objects with Data Object Wizard” on
page 3-5.

* Creating data objects based on an external data dictionary. You can do
this manually item by item, or all at once automatically using a script.
For more information, see “Creating Data Objects Based on an External
Data Dictionary” on page 3-19.

The following sections illustrate how to create Simulink and mpt data objects
and compares their properties as data types.

Creating Data Objects with Data Object Wizard

You can use the Data Object Wizard to create data objects for your model (see
Data Object Wizard in the Simulink documentation).

The Data Object Wizard is especially useful for creating multiple data objects
for
¢ Existing models that do not currently use data objects.

¢ Existing models to which you have added signals or parameters and
therefore you need to create more data objects.

3 Managing the Data Dictionary

3-6

Creating Simulink Data Objects
This procedure creates Simulink data objects using the Data Object Wizard.

1 Open the model whose data objects you want to be in the data

dictionary. For example, open rtwdemo_mpf.mdl (which is located in

toolbox/rtw/rtwdemos). This model appears as shown below.

E!rtwdemn_mpf o |_ (O] x|
File Edit View Simulation Format Toaols Help
D& 2Ry sfoo e -HesRes hEE TS
aut 2
X ot) -
" %‘"g . IvoKe Data
- Object Wizard

Chart

Trigger()

(S
= [Tk

Data Store Data Store

(Double click.)

Invoke Model Explorer

{Double click.)

ihirite m Readd 1 sH> »>
Merge | E]
— H@ > Frar®)

Data Store E

MEMON i Store o

Readz - = »
Subsystem2
Ready [1o0es |FixedStepDiscrete

Creating Simulink and mpt Data Obijects

2 Open the Data Object Wizard by entering dataobjectwizard at the
MATLAB command line or by selecting Data Object Wizard from the
Tools menu of your model. The Data Object Wizard dialog box appears,
as shown below.

<) Data Object Wizard =101 x|

Analyzes the model specified below and lists its unresolved data
ohjects and data types that will be created

| Object Hame | Clags | Package

Check Al | Wncheck A1 |
Choose package for selected deta obiects: |Simulink - I Apply Packane

Model name: | Browse

Find optian
[¥ Rootinputs [V States ¥ Block outputs ¥ a&ligs types
[Root outputs [Data stores | Parameters

Find | creete | cancat | Hew |

3 In the Model name field, type the name of the model you opened in step
1 and press the Enter key, or navigate to it using the Browse button.
The Find button becomes available. Notice the check boxes in the Find
options pane.

4 In the Find options pane, select the desired check boxes. For descriptions
of each check box, see Data Object Wizard in the Simulink documentation.

Be sure to check the Alias types option. This finds all user-registered
data types in the s1_customization.m file plus all data type replacements
specified for the model in the Data Type Replacement pane of the

3 Managing the Data Dictionary

3-8

Configuration Parameters dialog box. The Data Object Wizard can create
Simulink.AliasType objects from these.

Click the Find button. After a moment, a list of all of the model’s potential
data objects appear that are not yet in the code generation data dictionary,
as shown below. This includes all of the model’s signals (root inputs, root
outputs, and block outputs), discrete states, data stores, and parameters,
depending on

® The check boxes you selected in the previous step

e The constraint mentioned in the note above

The Data Object Wizard finds only those signals, parameters, data stores,
and states whose storage class is set to Auto. The Wizard lists each data
store and discrete state that it finds as a signal class.

Click Check All to select all data objects. Notice in the Choose package
for selected data objects field that Simulink, the default, is selected.
So all of the data objects are associated with the Simulink package, as
shown below.

<) Data Object Wizard E o) x|
Unresalved data ohjects and data types found in analyzed maodel
Select each data ohject and data type you wish to create for the
madel rtveclema_mpt
] Object Hame [Class [Package
e Signal Simulink
<& Signal Simulink
Flc Signal Simulink
o Signal Sirnulink
oS Signal Simulink
e Signal Simulink
[V Final Signal Simulink
Iz Signal Simulink
V]ss Signal Simulink
1F1 Parameter Simulink
V11 Parameter Sirulink
o2 Parameter Simulink
|2l ezl Parameter Simulink
| Gaint Parameter Simulink
| zain2 Parameter Simulink
Check Al Uncheck &l
Chonse package for selected data objscts: [Simulink ~| Apply Package
Modlel name: ftwemo_mpf Browse
— Find option:
[¥ Rootinputs [States [¥ Block outputs W alias types:
¥ Rot outputs [Data stores [# Parameters
Find Create Cancel Help

Creating Simulink and mpt Data Obijects

7 Click Create. The data objects are added to the MATLAB workspace, and
they disappear from the Data Object Wizard.

8 Click Cancel. The Data Object Wizard disappears.

Now you can set property values for the data objects.

Setting Property Values for Simulink Data Objects. Most of the property
values of data objects are supplied by defaults. A few are from the model.
Note that for Simulink data objects, the default storage class is Auto.

1 Type daexplr on the MATLAB command line, and press Enter. The Model
Explorer appears.

2 In the Model Hierarchy (left) pane, select Base Workspace. All of the
Simulink data objects in the code generation data dictionary appear in the
Contents of (middle) pane, as shown below.

& Model Explorer E - o) x|

File Edit Wiew Tools Add Help

|ossmaxBHe%Hf o8 On 4+ awrmz A

| searcn by Block Tope =] Tope. [Chat =] [Search
Model Hierarchy Contents of. Base Workspace Bass Workspace
=] @Slmuhnk Roat | DataType | Value I Dimensions I C The base [MATLAR] workspace containg variables that are visible to all Simulink models.
s pace o 3 ™ These wariables can be used to parameterize certain model, block and signal parameters.
T twdemo_mpi e 1 ol
auto -1 a
auto il a
auto il a
auto i a,
auto 2 [l e,
auto -1 A,
auta [1] e
auta 26 [11] e
auto 9 ()] =
auto 5 [l =
[] Gainz aulo 3 H1 e
= L auto -1 A,
£ 55 auto A a
il | i
Contents Revert Help Apply

BN

3-9

3 Managing the Data Dictionary

3-10

3 To see the properties of a Simulink data object, select a data object in the
middle pane. The right pane displays the property names, as shown below.
(For descriptions of the properties, see Parameter and Signal Property
Values on page A-19.) These property names also appear as column
headings in the middle pane. You have control over the values specified

for these properties.

P& Model Explorer =101
File Edt Wew Tools Add Help
|oelimaxBH%Hf o0 On 4+ anrmz A
HSealch |by Block Type | Tupe |Ehart | Search |
Model Hierarchy | ontents of Base workspace ||gimufink Signal: &
=[E9]Simulck Root Narme DataType | Value | Dimensians | C|| Datatpe: [auto =] bnits
; i Base Workspace Dimensions: |-1 Complexity: | auta 'I
3 tua J
- [Btwcemo_mp =L sut A &) | Sample time:[1 Sample mode: [auto |
EC auto 1 | R Masimum: ~ [ind
€D auto -1 a ;
= D5 auto 4 al Iritial walue:
=E aulo a au| | ~Code generation optio
[:] F1 auta 2 [l e[| Storage class: [Auto =l
- Final auto -1 aL Alias: I
[auta] el
auta 26 [11] | Deseription:
auto 9 ()] e
auto 3 111 e
[1] Gain2 it 31 e
= L auto -1 at,
£ 55 suta -1 &l
: 2
Contents [Search Resuls e ich Al
A

4 For this example, while pressing the Ctrl key, select signal data object A
and parameter data object F1 in the middle pane.

Creating Simulink and mpt Data Obijects

5 In the middle pane, move the scroll bar so that you can see the
StorageClass column, as shown below.

=101

File Edit Wew Tools add Help

[oesmaxBH%Hf fo0 @R +h][awrmza

HSealch |by Block Type j Tope: |Ehart j Search |
Model Hierarchy | ontents of Base workspace Simulink Signal: A

=[] Simuiink Root alue | Dimensions | Complerity | StoragaClass | Min | Max | De|| Datatyps: [auta =] Units:
nEaseWolkspace Dimensions: |-1 Complesity: auto 'I

B tewdema_maf 4 suto Auta Ant - Inf Sample tme:[1 Sample mode: | auta |

1 ado Auo At Inf Minimum: [1F Masimum: ~ [ind
-1 auto At Anf Inf l—
-1 auto At dnf Inf [iitalale:
Kl aulo Auto It Inf r—Code generation optial
[real At Ak Inf Storage dlass [Aulo |
-1 auto Auta Anf Inf Allas: I
[real Auta anf - Inf

B [11] real Auto Ant Inf Description:
ni eal Auta Anf Inf
ni real Auto Anf Inf
[teal Auto anf - Inf
-1 auto Auta Anf Inf
-1 autn Auta Anf Inf

K| et | i

Contents Revert Help Apply

3-11

3 Managing the Data Dictionary

3-12

6 For this example, click one of the rows and select Default (Custom). The
StorageClass property value for the Simulink data object changes from
the default Auto to Default (Custom), as shown below.

D Model Explorer = =0l x|

File Edit Wew Tools add Help

[De/ s max[BH=%Hffo® ands[anmza

HSealch |by Block Type | Tupe |Ehart | Search |
Model Hierarchy | ontents of Base workspace Simulink Signal: A
=+ ESimulink Root e [e [S s Data type: | auin x| Urits
ﬁEase ‘workspace - Anf Dimensiors: |-1 Complesity: auto 'I
3 tua J
i ftucmo_m - suto Auto AnfInE || g ample time:[1 S ample mode: [auto -1
A ado At SO | BV i Masimum: ~ [ind
-1 auto At Anf - Inf
-1 auto At Anf - Inf [iitalale:
1 auta Ao anf Inf r—Code generation optial
[1] teal Auto Anf Inf Storage olass: | Default [Custam] |
-1 auto Auta Anf - Inf Alias: I
1 real Auto Ané Inf
B [11] real At Anf - Inf Description:
ni eal Auta Anf - Inf
ni real Auto Anf - Inf
(L] real Auta Anf - Inf
-1 auto Auta Anf - Inf
-1 autn Auta Ak Inf
Kl | i
Contents [Search Resulls e nfely igel)
A

Generating and Inspecting Code. All data objects for the model are in the
code generation data dictionary. You have specified property values for each
data object’s properties as needed. Now you generate and inspect the source
code, to see if it needs correction or modification. If it does, you can change
property values and regenerate the code until it is what you want.

1 In the Configuration Parameters dialog box, click Real-Time Workshop

in the left pane.

2 In the Documentation pane, select the Generate HTML report check

box.

Creating Simulink and mpt Data Obijects

Note When you select the Generate HTML report check box, Real-Time
Workshop Embedded Coder automatically selects the two check boxes
under it: Include hyperlinks to model and Launch report after code
generation completes. For large models, you may find that HTML report
generation takes longer than you want, after performing step 4 below.

In this case, especially for large models, consider clearing the Include
hyperlinks to model check box. The report will be generated faster.

3 In the Configuration Parameters dialog box, select the Generate code
only check box. The Build button changes to Generate code.

Note The generate code process generates the .c/.cpp and .h files. The
build process adds compiling and linking to generate the executable.
For details on build, see “Build Process” in the Real-Time Workshop
documentation.

4 Click the Generate code button. After a moment, the HTML report
appears, listing the generated files on the left pane (under Generated
Source Files).

5 Select and review files in the HTML report.

3-13

3 Managing the Data Dictionary

3-14

Creating mpt Data Objects, Setting Property Values, and
Generating Code

Create mpt Data Objects using the Data Object Wizard the same way you
did for Simulink data objects, as explained in “Creating Simulink Data
Objects” on page 3-6, except select mpt as the package instead of Simulink.
The mpt data objects contain all the properties of Simulink data objects plus
additional properties.

Set the property values for the mpt data objects the same way you set them for
Simulink data objects, as explained in “Setting Property Values for Simulink
Data Objects” on page 3-9, except note these exceptions:

® Accept the default custom storage class for mpt data objects,
Global(Custom)

® For data objects A and F1, type mydefinitionfile in the Definition file
field on the Model Explorer.

Then generate and inspect the code.

Note The Alias field is related to “Applying Naming Rules to Identifiers
Globally” on page 3-22.

Creating Simulink and mpt Data Obijects

Comparing Simulink and mpt Data Objects

You can deduce the added control available for mpt data objects compared
with that for Simulink data objects, by comparing the

¢ Signal and parameter properties in Model Explorer

¢ Configuration options in the Configuration Parameters dialog box and
Model Explorer

® Generated code

In summary, the different custom storage classes on the Model Explorer for
mpt data objects provide control over the appearance of the generated code.
The additional custom attributes (owner, definition file, persistence level,
memory section) provide more control over data packaging of the generated
code. In the Configuration Parameters dialog box or Model Explorer for mpt
data objects, the Custom comments feature on the Comments pane allows
you to add a comment just above a signal or parameter’s identifier in the
generated code. With Signal display level on the Data Placement pane,
you can specify whether or not the code generator declares a signal data object
as global data. The Parameter tune level on the Data Placement pane
allows you to specify whether or not the code generator declares a parameter
data object as tunable global data.

Signal and Parameter Properties

The properties that appear in Model Explorer when mpt is the package include
all the properties that appear when Simulink is the package plus additional
properties. Notice this by comparing the next two figures. (For descriptions of
all properties in Model Explorer, see Parameter and Signal Property Values
on page A-19.)

3-15

3 Managing the Data Dictionary

3-16

odel Explorer :
File Edit ¥iew Tools Add Help

EEEE REEET Y IFEE R TR)

HSealch |by Block Type LI Tupe: |Ehalt LI Search
Madel Hierarchy | conterts of. Base workspace ||gimutink Signal: &
E-@Slmuhnk Root T DataType Walue | Dir|| Data type: |auln ;IUnils |
1 Base Waorkspace Dimensions: [-1 Complesity: [suto =]
Bl o £ auto || Sample time: [Sample: mode: | auto |
£ auto A Minimum: |-\nf arimumn; |\nl
£ D auto -1
£ D3 o 3 || il vaee:
£ E auto 1 || Code generatian option:
[F1 auto 2 (]| Storage class: | Auta =l
-E Final auto -1 Alias I
4 G1 auto 6 [1
]2 auto 28 11| Descriptiors
] G2 auto] 1
] Gainl auto g i
] Gain2 auto 3 i
£ L auto -1
£ 55 alito -1
| | i
Contents Fevert | Help Apply
4
~=lojx|
File Edit ¥iew Tools Add Help
D2 s m@x BEH~E%I EEIRT T)
H‘Seavch [by Block Type = Type: [Chant =] Seaich
Model Hierarchy ‘I Cortents of: Base Workspace ‘ mpt.Signal: A
= 9] Simuiink Roat Datatppe: [auto | Urits 1=
BB s Workspase Dimersions: [1 Complesity: [auto =l
iftucemo_mpt i e ooy [|
Miniroum: [+t Makimum:— [inf
Initial value:
Code generation o
Storage class:| Global [Custom] =]
Custom attribut
Memory sectian: | Defaul Ra|
Header file:
Duwner
4] Gain2 auta R 2 Definiion fie: |
et aule i a1 Persitance levet [1
£ 55 aulo 1 a
Alias [
Desciiption
ot 2 B
o Rievert Help | Apply |
VA

Creating Simulink and mpt Data Obijects

Configuration Options

The following configuration options relate to Real-Time Workshop Embedded
Coder module packaging features. These options are available in the
Configuration Parameters dialog box and Model Explorer when the system
target file selected for a Simulink model is ert.tlc (or a system target file
derived from an ert.tlc):

¢ Custom comments (MPT objects only) on the Real-Time
Workshop/Comments pane

¢ Global data placement (MPT data objects only) on the Real-Time
Workshop/Data Placement pane:

= Module naming
= Signal display level

= Parameter tune level

3-17

3 Managing the Data Dictionary

3-18

Generated Code

In the example used in “Setting Property Values for Simulink Data Objects”
on page 3-9, you selected Default (Custom) in the Storage class field for
signal A and parameter F1. You selected the default Auto in the Storage
class field for the remaining data objects. But for the mpt data objects you
used the default Global (Custom) in the Storage class field for all data
objects. When you generated code, these selections resulted in the definitions
and declarations shown in the table below.

Simulink Data Object with
Auto Storage Class

Simulink Data Object with
Default (Custom) Storage
Class

mpt Data Object with

Global (Custom) Storage
Class and Definition File
Named mydefinitionfile

In rtwdemo_mpf.c:

/* For signal A */
Externallnputs rtu;

/* For parameter F1 */
if(rtU.A * 2.0 > 10.0)

In rtwdemo_mpf.h:

/* For signal A */

typedef struct {
real T A;

} Externallnputs;

extern Externallnputs rtu;

foold

In global.c:

real T A;

real T F1 = 2.0;

In global.h:

extern real T A;
extern real T F1;

In mydefinitionfile.c:

real T A;

real T F1 = 2.0;

In global.h:

extern real T A;
extern real T F1;

The results shown in the second and third columns of the preceding table
require the following configuration parameter adjustments on the Real-Time
Workshop > Data Placement pane:

¢ Set Data definition to Data defined in single separate source

file.

¢ Set Data definition filename to global.c

Creating Simulink and mpt Data Obijects

e Set Data declaration to Data declared in single separate source
file.

¢ Set Data definition filename to global.h

See the left column of the table, which shows generated code for Simulink
signal and parameter data objects, whose Storage class field is Auto. The
input A is defined as part of the structure rtU as shown above. In the case
of the Simulink parameter data object F1, since the StorageClass was set
to auto, the code generator chose to include the literal value of F1 in the
generated code. F1 is a constant in the Stateflow diagram whose value is
initialized as 2.0:

if(rtu.A * 2.0 > 10.0) {

For more details, see “Introduction to Custom Storage Classes” in the
Real-Time Workshop Embedded Coder documentation and “Summary of
Signal Storage Class Options” in the Real-Time Workshop documentation.

See the middle column of the table. The Simulink data objects whose Storage
class is not Auto are defined in a definition statement in the global source
file (global.c) and declared in a declaration statement in the global header
file (global.h).

In the right column, Simulink data objects whose Storage class is not Auto
are defined in mydefinitionfile, as you specified. The declarations for those
objects are in the global header file.

Creating Data Objects Based on an External Data
Dictionary

This procedure creates data objects based on an external data dictionary
(such as an Excel file). You can do this manually (that is, one-by-one) or
automatically (all at once).

3-19

3 Managing the Data Dictionary

3-20

Manually Creating Objects to Represent External Data

You can create data objects (and their properties) one-by-one, based on an
external data dictionary, as follows:

1 Open the external file that contains the data (such as a spreadsheet or
database file).

2 Determine all of the data in this file that correspond to the parameters and
signals in the model. In the code generation data dictionary, parameters
in the external file belong to the Simulink parameter class and signals
belong to the Simulink signal class.

3 On the MATLAB command line, type daexplr and press Enter. The Model
Explorer appears.

4 On the Model Hierarchy (left) pane, expand Simulink Root, and select
Base Workspace.

5 On the Add menu, select MPT Parameter or Simulink Parameter. The
default name Param appears in the Contents of (middle) pane.

6 Double-click Param and rename this data object as desired.

7 Repeat steps 5 and 6 for each additional data item in the external file that
belongs to the mpt.Parameter class or Simulink.Parameter class.

Now you will add data items in the external file that belong to the
mpt.Signal class or Simulink.Signal class.

8 On the Add menu, select MPT Signal or Simulink Signal. The default
name Sig appears in the Contents of pane.

9 Double-click Sig and rename the data object as desired.

10 Repeat steps 8 and 9 for each additional data item in the external file that
belongs to the mpt.Signal class or Simulink.Signal class.

All external data items for the mpt.Parameter or Simulink.Parameter
class, and the mpt.Signal or Simulink.Signal class now appear in the
Contents of pane and in the MATLAB workspace. Therefore, they have
been created in the code generation data dictionary.

Creating Simulink and mpt Data Obijects

Note The property values for these data objects are supplied by default.

Automatically Creating Objects to Represent External Data

You can create data objects (and their properties) all at once, based on

an external data dictionary by creating and running a .m file. This file
contains the same MATLAB commands you could use for creating data objects
one-by-one on the command line, as explained in “Working with Data Objects”
in the Simulink documentation. But instead of using the command line, you
place the MATLAB commands in the .m file for all of the desired data in

the external file:

1 Create a new .m file.

2 Place information in the file that describes all of the data in the external
file that you want to be data objects. For example, the following information
creates two mpt data objects with the indicated properties. The first is for a
parameter and the second is for a signal:

% Parameters

mptParCon = mpt.Parameter;
mptParCon.RTWInfo.CustomStorageClass ='Const';
mptParCon.value = 3;

% Signals

mptSigGlb = mpt.Signal;

mptSigGlb.DataType = 'int8';

3 Run the .m file. The data objects appear in the MATLAB workspace.

Note If you want to import data from an external data dictionary, you can
write functions that read the information, convert these to data objects, and
load them into the MATLAB workspace. Among available MATLAB functions
that you can use for this process are xmlread, xmlwrite, x1sread, xlswrite,
csvread, csvwrite, dlmread, and dlmwrite.

3-21

3 Managing the Data Dictionary

3-22

Saving and Loading Data Objects

In a .mat file, you can save the set of data objects (and their properties) that
you have created and load this information for later use or exchange it with
another user. You can save some of the data objects in the workspace or all of
them. See Opening, Loading, Saving Files in the MATLAB documentation.

Applying Naming Rules to Identifiers Globally

Note This feature applies both to Simulink and mpt data objects.

Signal and parameter names appear on the model. The same names appear
as data objects on the Model Explorer. By default, these names are replicated
exactly in the generated code. For example, "Speed" on the model (and
workspace) appears as the identifier "Speed"in the code, by default. But you
can change how they appear in the code. For example, if desired, you can
change "Speed" to SPEED or speed. Or, you can choose to use a different
name altogether in the generated code, like MPH. The only restriction is that
you follow ANSI C/C++ rules for naming identifiers.

There are two ways of changing how a signal name or parameter name is
represented in the generated code. You can do this globally, by following this
procedure. This procedure makes selections on the Configuration Parameters
dialog box to change all of the names when code generation occurs, according
to the same rule. Or, you can change the names individually by following
“Setting Property Values for Simulink Data Objects” on page 3-9. The relevant
field in that procedure is Alias on the Model Explorer.

If the Alias field is empty, the naming rule that you select on the Configuration
Parameters dialog box applies to all data objects. But if you do specify a
name in the Alias field, this overrides the naming rule for that data object.
The table below illustrates these cases. The table assumes that you selected
Force lower case as the naming rule. But with the information provided,
you can determine how any of the naming rules works for an mpt data object

Applying Naming Rules to Identifiers Globally

or a Simulink data object (Force upper case, Force lower case, or Custom
M-function).

Naming Rules and Alias Override (Global Change of Force Lower Case Rule)

Name of Data Name in Alias

Object in Model Field Package Result in Generated Code
A Simulink or mpt | a

A D Simulink or mpt | D

You specify data object naming rules on the Real-Time Workshop > Symbols
pane of the Configuration Parameters dialog box. To access that pane,

1 Open your model.

2 Open the Configuration Parameters dialog box from the Simulation menu
or Model Explorer.

3 Open the Real-Time Workshop > Symbols pane. See the section
Simulink data object naming rules.

Real-Time Workshop
General | Comments | {Symbokst | Custom Code | Debug | Interface | Templates | Dat « | »
—Awto-generated identifier naming rul
Symbol format [erigm
Mimirum mangle lenath: |1
Masimum identifier langth: |31
Generate scalar inined parameters as:l Literals j
- Simulink. data abject naming rul
Signal naming | Force lower oase =l
Parameter nammg:l Mone j
tidefine naming: | None =l
¥ Generate code only Generate code
Fevet L

3-23

3 Managing the Data Dictionary

3-24

Notice the preconfigured settings on this pane. If all of these are acceptable as
is, proceed to “Creating User Data Types” on page 3-27. Otherwise, follow the
procedures below, as desired, to change parameter names, signal names, or
parameter names you want to use in a #define preprocessor directive. “MPF
Panes on the Configuration Parameters Dialog Box” on page A-2 describes all
fields on this pane and their possible settings for these procedures.

® “Defining Rules That Change All #defines” on page 3-24
® “Defining Rules That Change All Parameter Names” on page 3-25
¢ “Defining Rules That Change All Signal Names” on page 3-26

Defining Rules That Change All #defines

This procedure allows you to change all of the model’s parameter names
whose storage class you selected as Define in “Creating mpt Data Objects,
Setting Property Values, and Generating Code” on page 3-14, using the same
rule. The new names will appear as identifiers in the generated code:

1 In the #define naming field, click the desired selection. (“MPF Panes
on the Configuration Parameters Dialog Box” on page A-2, explains the
possible selections, under the Symbols pane.) The default is None. If you
select Custom M-function, go to the next step. Otherwise, click Apply and
proceed to “Defining Rules That Change All Parameter Names” on page
3-25.

2 Write a function in M-code that changes all occurrences of the parameter
name whose storage class you specified as Define in “Creating mpt Data
Objects, Setting Property Values, and Generating Code” on page 3-14 so
that it appears the way you want as an identifier in the generated code.
(An example is shown below.)

3 Save the function as a .m file in any folder that is in the MATLAB path.

4 In the M-function field under #define naming, type the name of the
file you saved in the previous step.

5 Click Apply and then define rules that change all parameter names.

Applying Naming Rules to Identifiers Globally

Defining Rules That Change All Parameter Names

This procedure allows you to change all of the model’s parameter names, using
the same rule. The new names will appear as identifiers in the generated code:

1 In the Parameter naming field, click the desired selection. (“MPF Panes
on the Configuration Parameters Dialog Box” on page A-2, explains the
possible selections, under the Symbols pane.) The default is None. If you
selected Custom M-function, go to the next step. Otherwise, click Apply,
and proceed to “Defining Rules That Change All Signal Names” on page
3-26.

2 Write a function in M-code that changes all occurrences of parameter
names in the model to appear the way you want as identifiers in the
generated code. For example, the code below changes all parameter names
as necessary to make their first letter uppercase, and their remaining
letters lowercase.

function

revisedName = initial_caps_only(name, object)
INITIAL_CAPS_ONLY: User-defined naming rule causing each
identifier in the generated code to have initial cap(s).

o® o° o°

o°

name: name as spelled in model.
object: the object of name; includes name's properties.

o° o°

o°

revisedName: manipulated name returned to MPT for the
code.

o°

- o0

revisedName = [upper(name(1)),lower(name(2:end))];

3 Save the function as a .m file in any folder that is in the MATLAB path.

4 In the M-function field under Parameter naming, type the name of the
file you saved in the previous step.

5 Click Apply and then define rules that apply to all signal names.

3-25

3 Managing the Data Dictionary

3-26

Defining Rules That Change All Signal Names

This procedure allows you to change all of the model’s signal names, using the
same rule. The new names will appear as identifiers in the generated code:

1 On the Signal naming field, click the desired selection. (MPF Elements
on Configuration Parameters Panes on page A-2, explains the possible
selections, under Symbols pane.) The default is None. If you selected
Custom M-function, go to the next step. Otherwise, click Apply and then
generate and inspect code.

2 Write a function in M-code that changes all occurrences of signal names
in the model to appear the way you want as identifiers in the generated
code. (An example is shown in “Defining Rules That Change All Parameter
Names” on page 3-25.)

3 Save the function as a .m file in any folder that is in the MATLAB path.

4 In the M-function field under Signal naming, type the name of the file
you saved in the previous step.

5 Click Apply and then generate and inspect code.

Creating User Data Types

Creating User Data Types

Note This feature applies both to Simulink and mpt data objects.

By default, MathWorks data types (such as real32_Tand uint8 T) are used to
define data in the generated code. If you prefer using your company-standard
data types (such as DBL and U8), you can define user data types. To use

this feature, you must register and create your data types so that the code
generator can associate them with the corresponding MathWorks C/C++ data
types. Then, the code generator will use your user data types in the generated
code instead of the MathWorks C/C++ data types.

Real-Time Workshop automatically associates the MathWorks C/C++ data
types with the equivalent ANSI C/C++ data types. If you want to use only the
default MathWorks C/C++ data types, you do not need to register and create
your own data types.

To register user data types, use the Simulink customization file

sl _customization.m. This file is a mechanism that allows you to use
M-code to perform customizations of the standard Simulink user interface.
Simulink reads the s1_customization.m file, if present on the MATLAB
path, when it starts and the customizations specified in the file are applied
to the Simulink session. For more information on the s1_customization.m
customization file, see “Customizing the Simulink User Interface” in the
Simulink documentation.

Once you have registered your user data types using s1_customization.m,
you must create the Simulink.AliasType objects corresponding to your
user data types. If your model references a user data type either directly
(for example, in the output data type of a block) or indirectly (for example,
a Simulink.Signal object data type is set to the user data type), you must
create the corresponding Simulink.AliasType object before updating

the model, running a simulation, or generating code. To create the
Simulink.AliasType objects, you can:

¢ Invoke the MATLAB function ec_create_type obj to programmatically
create all the required Simulink.AliasType objects

3-27

3 Managing the Data Dictionary

3-28

® Create Simulink.AliasType objects one at a time by selecting
Add > Simulink.AliasType in the Model Explorer

® Create Simulink.AliasType objects one at a time by entering the MATLAB
command userdatatype = Simulink.AliasType, where userdatatype is a
user data type registered in s1_customization.m

Registering User Data Types Using sl_customization.m

To register user data type customizations, you create an instance

of s1_customization.m and include it on the MATLAB path of the
Simulink installation that you want to customize. The s1_customization
function accepts one argument: a handle to an object called the
Simulink.CustomizationManager. For example,

function sl_customization(cm)

As a starting point for your customizations, the s1_customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering Simulink user
data type customizations:
® addUserDataType(hObj, userName, builtinName, userHeader)
addUserDataType(hObj, userName, builtinName)
addUserDataType (hObj, userName, aliasTypeObj)
addUserDataType(hObj, userName, numericTypeObj)
addUserDataType(hObj, userName, fixdtString)

Registers the specified user-defined data type and adds it to the top of the
data type list, as displayed in the Data type pull-down list in the Model
Explorer.

= userName — Name of the user data type

= builtinName — MathWorks C/C++ data type to which userName is
mapped

Creating User Data Types

= userHeader — Name of the user header file that includes the definition
of the user data type

= aliasTypeObj, numericTypeObj, or fixdtString —
Simulink.AliasType, Simulink.NumericType, or fixdt to
which userName is mapped

Note Ifa Simulink.AliasType or Simulink.NumericType object of the
same name as your registered user data type is already defined in the base
workspace, the definitions of the existing object and the registered user
data type must be consistent or a consistency warning will be displayed.

moveUserDataTypeToTop(hObj, userName)

Moves the specified user-defined data type to the top of the data type list,
as displayed in the Data type pull-down list in the Model Explorer.

moveUserDataTypeToEnd(hObj, userName)

Moves the specified user-defined data type to the end of the data type list,
as displayed in the Data type pull-down list in the Model Explorer.

removeUserDataType(hObj, userName)

Removes the specified user-defined data type from the data type list.

Your instance of the s1_customization function should use these methods to
register user data types for your Simulink installation.

Simulink reads the s1_customization.m file when it starts. If you
subsequently change the file, you must restart Simulink or enter the following
command at the MATLAB command line to effect the changes:

sl _refresh_customizations

3-29

3 Managing the Data Dictionary

3-30

Example User Data Type Customization Using
sl_customization.m

The s1_customization.m file shown in Example 1: sl_customization.m for
User Data Type Customizations on page 3-30 uses the following methods:

addUserDataType to register the user-defined data types MyInt16, MyInt32,
MyBool, and fixdt(1,8)

moveUserDataTypeToTop to move MyBool to the top of the data type list, as
displayed in the Data type pull-down list in the Model Explorer

removeUserDataType to remove the built-in data types boolean and
double from the data type list

Example 1: sl_customization.m for User Data Type Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add custom types

hObj.addUserDataType('MyInt16', 'int16_T', '<mytypes.h>');
hObj.addUserDataType('MyInt32', 'int32_T', '<mytypes.h>');
hObj.addUserDataType('MyBool', 'boolean T');
hObj.addUserDataType('fixdt(1,8)"');

% Make MyBool first in the list
hObj.moveUserDataTypeToTop('MyBool"');

% Remove built-in boolean and double from the list
hObj.removeUserDataType('boolean');
hObj.removeUserDataType('double');

end

Creating User Data Types

If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Model
Explorer. For example, you could view the customizations as follows:

1 Start MATLAB.

2 Open Model Explorer, for example, by entering the MATLAB command
daexplr.

3 Select Base Workspace.
4 Add an mpt signal, for example, by selecting Add > MPT Signal.
5 In the right-hand pane display for the added mpt signal, examine the Data

type drop-down list, noting the impact of the changes specified in Example
1: sl_customization.m for User Data Type Customizations on page 3-30.

& Model Explorer =10 x|
File Edit View Tools Add Help

D[t mx BHERHFFo@ D040 | A m= A
HSealch Iby Block Type ;I Type: I ;I Search |
Model Hierarchy Contents of: Base Workspace mpt.Signal: Sig

E--E‘Slmulmk Root | Mame |Value| DataTyp Data type:

Uriits: =

ﬁ Base Workspace -£ Sig At Dimensions: Complexity: | auto 'I
- gunlllled . MyBool

Sample time: fikc1.9) Sample mode: | auto 'I

Miirurn: | Mylnt32 Mawirnurn: Inf
Iritisl value: | MARETE
single
int3
Storage cif wintd — ;I
intl6

—Code genel

Custom 4

Lint16 hd
Memary SEETER. | U0t LI

Header file: |

Owner: I

Definition file: I

Persistence level |1

Alias: |

Diescription,

| ol
Contents | Search Results Figvert Help | Apply

N

3-31

3 Managing the Data Dictionary

3-32

Selecting User Data Types for Signals and Parameters

This procedure assumes you have

® Registered user data type 32, associating it with MathWorks C/C++ data
type real32_T

® Specified <userdata_types.h> as the #include.h file for 32 in
sl _customization.m.

An example of the typedef statement you placed in the #include file,
userdata_types.h, is

typedef float f32;

Open a model and create a data dictionary. (See “Creating Simulink and mpt
Data Objects” on page 3-5.) The example model used in this procedure and its
resulting Model Explorer, are shown below. The three data objects are signals
sig1 and sig2, and parameter g. The registered, user-defined data type, 32,
appears in the middle pane. The "T" indicates f32 is an alias data type.

E!sampleUserDT O] x|
File Edit “iew Simulation Format Toole Help
DSE& & By =00 [Mom ~|
In2 =
Fieady [1005% [|T=0.00 [FixedStepDiscrats v

Selecting User Data Types for Signals and Parameters

The Model Explorer for the preceding model looks like this:

& Model Enplorer

=10l

File Edit Miew Tools Add Help

Dz imaxBHE%HFO D0 48

M odel Hierarchy | Contents of: Base Workspace Base Workspace
[=- @Slmulmk Roat N DataT al Canl The baze [MATLAB) workspace contain:
T i csmace I amel o2 ‘PDEI aual P || variables that are visible ta al Simulink models
S - € =gz auto auto These varishles can be used to parameterize
H %Cunhguratmn Freferences £ sigl autn auto certain model, block. and signal parameters.
--EsampleUserDT [m] a auto 1 real
[T] 2z
4 | —’I- Revert Help Apply

Proceed to the following, as applicable:

e “Selecting User Data Types for Simulink Signals” on page 3-33
e “Selecting User Data Types for Simulink Parameters” on page 3-36

Selecting User Data Types for Simulink Signals

This procedure explains how to use user-defined data types for Simulink
signals and for their corresponding identifiers in the generated code. You can

use user-defined data types with signals whether or not they have Simulink
signal objects associated with them.

1 For an mpt signal object that is associated with a signal in your model,

select the desired user data type in the Data type field. For example,
select £32, for sig1, as shown below.

7 rodel Explorer

B =101
Fis Em Vew Took At Mep
D@ s pmx @BHENH /O DR 4% | Arm=A
[[ET=T—— Corderts of. Base Workspacn g Sigrual. sag]
oS, Frcct Tiom [Cuatzpe [Smaniet | Urer cbiect e auro = =
R = o Daatps: [src] ures: [
el PR — | —
"R |8 =
Tz Sagle e 150 ke modks [
M wi e
c 1
B
Starage claas: | o =l
Customn stiby dea.be
Metncy sac] 7 — =
Header s —T
o T
|
Penisterce lovet [1

3-33

3 Managing the Data Dictionary

3-34

This selects 32 for the sig1 data object in the data dictionary, but does
not select ¥32 for the corresponding labeled signal in the model. So the
two may be in conflict. If you tried to update the model, you could get an
error message.

For a Simulink signal object, type 32 into the Data type field.

2 Select the model and double-click the signal’s source block. (The source
block of a model signal controls the signal’s data type.) For example, since
the source block for sig1 is the Sum block, double-click the Sum block. The
Function Block Parameters dialog box appears.

LI Function Block Parameters: Sum x|

Sui

Add or subbiact inputs. Specify one of the following:
a| string containing + or - for each input port, | for spacer between parts (e.g. ++-++]
b scalar >=1. A value > 1 sums all inputs; 1 sums elements of a single input vectar

M ain ISignaIDalaTypes I

tecn shae: AR -

Ligt of signs:
=

Sample time [-1 far inherited]:

1

arK I LCancel | Help | Spply |

3 Select the Signal data types tab. In the Output data type mode field,
select Specify via dialog. The dialog expands.

Selecting User Data Types for Signals and Parameters

4 As shown below, in the Output data type field, type the same user data
type name that you selected for the data object (step 1), and then click
Apply. The user data type of the signal in the model and that of the signal

object now are the same.

E! Function Block Parameters: Sum

x|
Sur
Add or subtract inputs. Specify one of the follawing:
a] string containing + ar - for each input port, | for spacer bebween ports (g0, ++H++]
b] scalar »=1. & value > 1 sums all inputs: 1 sums elements of a single input wector
tdain ‘ Signal Data Types |
[Require all inputs to have the same data type
Output data type mode:l Specify via dialog ;I
Output data type [2.g. sfix[16]). uint(8], flaat'single']):
]
Output sealing value (Slope, e.g. 2°-9 or [Slope Bias]. e.q. [1.25 2]}
|20

[~ Lock output scaling againgt changes by the autoscaling toal

Round integer calculations luwald.l Floor

[~ Saturate on integer overtlow

’TI LCancel | Help |

Apply

Instead of specifying a specific data type (step 4), you could do what is

termed dictionary-driven data typing: In the Output data type field,
specify object.DataType, where object is the case-sensitive object name.
For example, sig1.DataType, as shown below.

[Z]Function Block Parameters: Sum

x|
S

Add or subtract inputs. Specify one of the follawing:

a] stiing containing + ar - for each input port, | for spacer bebween ports (e.0. ++H++]
bl scalar »=1. 4 value > 1 sums all inputs: 1 sums elements of a single input wector

Main ‘ Signal Data Types |

[~ Require all inputs to have the same data type

Output data ype mude.l Specify via dialog

Output data type (e.0. sfix(16]. int(8). float'single’]l:
Islg'\ DataType

Output sealing value [Slope, e.q. 27-9 or [Slope Bias]. e.a. [1.25 3))
|0

[~ Lock output scaling against changes by the autoscaling tool

Round integer calculations tnwald'l Floor

[~ Saturate on integer overflow

0K I LCancel

Apply

3-35

3 Managing the Data Dictionary

3-36

The advantage of referencing like this is that subsequent changing of the
user data type in the dictionary for this object automatically changes the
user data type of the corresponding model signal.

5 Repeat steps 1 through 5 for each remaining model signal that has a
corresponding signal object for which you selected a user data type.

6 Save the model and save all of the data objects in the MATLAB base
workspace in a .mat file for reuse later. After generating code, you would

see the following code fragment for the example model sampleUserDT.md1l
(that has the default MPF settings):

In sampleUserDT.c: f32 sig1;

In sampleUserDT_types.h: #include <userdata_types.h>

Selecting User Data Types for Simulink Parameters

This procedure explains how to use a registered, user-defined data type as the
data type for a Simulink parameter and for its corresponding identifier in the
generated code. Unlike mpt signal objects, described in “Selecting User Data
Types for Simulink Signals” on page 3-33, registered user data types cannot
be used directly with Simulink parameter objects, as shown below.

S Model Explorer

=lolx|
File Edit View Tools Add Help
Dy hax BHcnilf@ Mm@ 45
Mads| Hisrarchy | [contents of: Baseworkspace Simulink.Parameter: g
E'@Sg‘g‘“k”;mk [Name [DataType [Yalue | Comples | Value: [1
- 1t Base Warkspace 0
---%Eonflgulallo:F‘references E 2:312 ::: :::: Datatype: [auto Units: [
- g sampleUseiD T i o i Dimensions: [[1 1] Complesity. [real
[T] 32 Mirirnum; |-\nf M awirnuirm; |\nf
1~ Code generation optian:
Storage class: |Autn ﬂ
Al |
Deescription:
| Al | _’l_ Fievert Help Apply
v

Selecting User Data Types for Signals and Parameters

Note that f32 appears in the middle pane and thus is a registered user data
type. But it is not available for selection in the right pane.) Instead, for some
blocks (like Gain), you can specify the user data type by double-clicking the
block and using the Parameter data types tab on the Function Block
Parameters dialog box.

The steps below illustrate this method. However, for many blocks, the
Parameter data types tab is not available. In these cases, the data type of
the block’s input or output signal determines the block’s parameter data type.

1 Double-click the parameter’s source block. For example, the source block
for g is the Gain block. The Function Block Parameters dialog box appears.

E! Function Block Parameters: Gain x|

Gain

’7 Element-wize gain [y = K._*u) ar matrix gain [y = K*u ar p = wK).

Main ISignaIDataT_l,lpes | Parameter Data Types I
Gair:

Multiplicatiorn: I Element-wige(k.“u] j

Sample time [-1 far inherited):
-1

ok I LCancel | Help | Apply |

2 Select the Parameter data types tab. In the Parameter data type
mode field, select Specify via dialog. The dialog expands.

3-37

3 Managing the Data Dictionary

3-38

3 As shown below, in the Parameter data type field, type the desired,
registered user data type name, and click Apply.

=] Function Block Parameters: Gain |

Gain

’7 Element-wize gain [y = K. *u) ar matrix gain [y = K*uar p = u*K].

tdain | Signal Data Types | Parameter Data Types |

Parameter data type mode:l Specify via dialog j

Parameter data type (9. #fix[16], uint(2]. foat(‘single]):
[E2

Parameter scaling model Best Precision: b atris-wize j

ak LCancel | Help | Apply |

4 Repeat steps 1 through 4 for each remaining Simulink parameter for which
you want to specify a registered user data type.

5 Save the model and save all of the data objects in a MATLAB base
workspace in a .mat file for reuse later. After generating code, you would
see the following code fragment for the example model sampleUserDT.md1:

In sampleUserDT.c: real32 T g = 1.0F;

In sampleUserDT_types.h: #include <userdata_types.h>

Registering mpt User Object Types

Registering mpt User Object Types

Real-Time Workshop Embedded Coder allows you to create custom mpt object
types and specify properties and property values to be associated with them.
Once created, a user object type can be applied to data objects displayed

in Model Explorer. When you apply a user object type to a data object, by
selecting a type name in the User object type pull-down list in Model
Explorer, the data object is automatically populated with the properties and
property values that you specified for the user object type.

To register mpt user object type customizations, use the Simulink
customization file s1_customization.m. This file is a mechanism that allows
you to use M-code to perform customizations of the standard Simulink

user interface. Simulink reads the s1_customization.m file, if present

on the MATLAB path, when it starts and the customizations specified in

the file are applied to the Simulink session. For more information on the

sl customization.m customization file, see “Customizing the Simulink User
Interface” in the Simulink documentation.

Registering mpt User Object Types Using
sl_customization.m

To register mpt user object type customizations, you create an instance

of s1_customization.m and include it on the MATLAB path of the
Simulink installation that you want to customize. The s1 _customization
function accepts one argument: a handle to an object called the
Simulink.CustomizationManager. For example,

function sl_customization(cm)

As a starting point for your customizations, the s1 _customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

3-39

3 Managing the Data Dictionary

3-40

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering mpt user object
type customizations:

® addMPTObjectType(hObj, objectTypeName, classtype, propNamel,
propValuel, propName2, propValue2, ...)

addMPTObjectType(hObj, objectTypeName, classtype, {propNamei,
propName2, ...}, {propValuel, propValue2, ...})

Registers the specified user object type, along with specified values for
object properties, and adds the object type to the top of the user object
type list, as displayed in the User object type pull-down list in the Model
Explorer.

= objectTypeName — Name of the user object type

= classType — Class to which the user object type applies: 'Signal’,
'Parameter’', or 'Both'

= propName — Name of a property of an mpt or mpt-derived data object to
be populated with a corresponding propValue when the registered user
object type is selected

= propValue — Specifies the value for a corresponding propName
® moveMPTObjectTypeToTop(hObj, objectTypeName)

Moves the specified user object type to the top of the user object type list, as
displayed in the User object type pull-down list in the Model Explorer.

® moveMPTObjectTypeToEnd(hObj, objectTypeName)

Moves the specified user object type to the end of the user object type list,
as displayed in the User object type pull-down list in the Model Explorer.

® removeMPTObjectType(hObj, objectTypeName)
Removes the specified user object type from the user object type list.

Your instance of the s1_customization function should use these methods to
register mpt object type customizations for your Simulink installation.

Simulink reads the s1_customization.m file when it starts. If you
subsequently change the file, you must restart MATLAB to effect the changes.

Registering mpt User Object Types

Example mpt User Object Type Customization Using
sl_customization.m

The s1_customization.m file shown in Example 2: sl_customization.m for
mpt Object Type Customizations on page 3-41 uses the addMPTObjectType
method to register the user signal types EngineType and FuelType for mpt
objects.

Example 2: sl _customization.m for mpt Object Type Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add commonly used signal types
hObj.addMPTObjectType(. ..
'EngineType', 'Signal’,...
'DataType’, 'uint8',...
'Min', 0,...
'Max', 255,...
'‘DocUnits', 'm/sec');

hObj.addMPTObjectType(...
'FuelType', 'Signal’,...
'DataType', 'inti16',...
'Min', -12,...
'Max', 3000,...
'DocUnits', 'mg/hr');

end
If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Model

Explorer. For example, you could view the customizations as follows:

1 Start MATLAB.

2 Open Model Explorer, for example, by entering the MATLAB command
daexplr.

3-41

3 Managing the Data Dictionary

3-42

3 Select Base Workspace.
4 Add an mpt signal, for example, by selecting Add > MPT Signal.

5 In the right-hand pane display for the added mpt signal, examine the User
object type drop-down list, noting the impact of the changes specified
in Example 2: sl_customization.m for mpt Object Type Customizations
on page 3-41.

6 From the User object type drop-down list, select one of the registered
user signal types, for example, FuelType, as shown below, and verify that
the displayed settings are consistent with the arguments specified to the
addMPTObjectType method in s1_customization.m.

& Model Explorer ;IEIEI

File Edit View Tools Add Help

Dt mmx BHEwHf fod @n4n)| vz

H Search: [by Block Type =] Tope: [=] Seaich |
Model Hierarchy Contents of; Base Workspace mpt_Signal: Sig
A Simlnk Froat [Wame [value | Datary || User sbiect te: RTINS 1=l
& Base Workspace £ 5ig g Diata bype: e =unis foge
Euntllled Dimenszions: |1— Complexity: auto hd
Sample time: |1— Sample mode: lh
Miruirrurn: |12— b airnur IS‘UUD—
Iinitial vale: l—
—Code generation optiot
Storage c\ass.l Global [Custom] j
Custorn attribu
Memomny section: I Default j
Header file: I
Ouwner: |
Drefinitiar file: |
Persistence level |1
Alias: |
Description: B
| 2 =
p— Rever Heo | app |

Replacing Builtln Data Type Names in Generated Code

Replacing Built-In Data Type Names in Generated Code

If your application requires you to replace built-in data type names with
user-defined replacement data type names in the generated code, you can do
so from the Real-Time Workshop > Data Type Replacement pane of the
Configuration Parameters dialog shown below.

#, Configuration Parameters: untitled /Configuration (Active) x|

Select I™ Replace data type names in the generated code =

- Solver
-~ Diata Import/E spart
- O ptimization
[z Diagnostics
- S ample Time
-+ [ata Walidity
-+ T ype Conversion
-+ Connectivity
-+ Compatibility
- Model Referencing
ardware Implementation
adel Referencing
eal-Time Warkshop
- Comments
- Symbals
- Cugtom Code
- Debug
- |nterface
- Code Style
- Templates
[rata Placement

-

[rata Type Replacen
Memory Sections

aK Lancel | Help | Lipply |

This pane is available for ERT target based Simulink models. In addition
to providing a mechanism for mapping built-in data types to user-defined
replacement data types, this feature:

® Performs consistency checks to ensure that your specified data type
replacements are consistent with your model’s data types.

* Allows many-to-one data type replacement, the ability to map multiple
built-in data types to one replacement data type in generated code. For
example, built-in data types uint8 and boolean could both be replaced in
your generated code by a data type U8 that you have previously defined.

3-43

3 Managing the Data Dictionary

3-44

Note For limitations that apply, see “Data Type Replacement Limitations”
on page 3-48.

If you select Replace data type names in the generated code, the Data
type names table is displayed:

Configuration Parameters: untitled /Configuration (Active) 1[
Select [v Replace data type names in the generated code 1=
- Solver —Data type n.
- Data Import/Export
DFt'm'Zat_'Dn Simulink Real-Time Workshop Replacement
(- Diagnostics . Mame Mame Mame
- Sarmple Time
- Data Validty double real T I
- Type Conversion
Connectivity zingle real32_T I
Compatibility 32 int32T |
Madel Referencing X X
- Hardware Implementation int1e int16_T I
- Model Referencing intd intg_T I
[=1-Real-Time Workshop inia2 wint32. T I
- Comments))
- Sy uint16 uint16_T I
- Custorn Code uint uintd_T |
-~ Debug boolean boolean_T |
- |nterface
- Code Style int int_T |
- Templates uint uint_T I
- [ata Placement
- Data Type Replaceme char char_T I
- Memory Sections
=
oK LCancel | Help | Apply |

The table Data type names lists each Simulink built-in data type name
along with its Real-Time Workshop data type name. Selectively fill in fields in
the third column with your replacement data types. Each replacement data
type should be the name of a Simulink.AliasType object that exists in the
base workspace. Replacements may be specified or not for each individual
built-in type.

For each replacement data type entered, the BaseType property of the
associated Simulink.AliasType object must be consistent with the built-in
data type it replaces. For double, single, int32, int16, int8, uint32,
uint16, uint8, and boolean, the replacement data type’s BaseType must
match the built-in data type. For int, uint, and char, the replacement data
type’s size must match the size displayed for int or char on the Hardware

Replacing Builtln Data Type Names in Generated Code

Implementation pane of the Configuration Parameters dialog. An error
occurs if a replacement data type specification is inconsistent.

For example, suppose that you have previously defined the following
replacement data types, which exist as Simulink.AliasType objects in the

base workspace:

User-Defined Name

Description

FLOAT64 64-bit floating point
FLOAT32 32-bit floating point
832 32-bit integer

S16 16-bit integer

S8 8-bit integer

u32 Unsigned 32-bit integer
uie Unsigned 16-bit integer
us Unsigned 8-bit integer
CHAR Character data

You can fill in the Data Type Replacement pane with a one-to-one

replacement mapping, as follows:

##, Configuration Parameters: untitled/Configuration (Active) x|
Select: [w Replace data type names in the generated code =l
Salver —Data type
Data Import/Export
 Dptimization Simulink RealTime Workshop Replacement
£l Diagnostios Name Mame Name
-Sample Time:
“Datavaidly double realT [FLoATES
- Type Conversion
- Connectivity single real32_T [FLOaT32
- Compatibity 2z T EH
-Model Referencing o s T B
- Hardware Implemertation | 1 CatAlEL |
- Model Referencing intd intg_T |SE
= Real Time Wwarkshop i3z uinG2T [052
Comments
Sumbols uintlG uint6_T Jute
Custom Code uintd uintd_T |UE
Debug boolean bodlean_T |
Interface
Cads Styls int int_T |
Templates uint uint_T |
-Data Placement
Data Type Replaceme | a0 ehaiT JeHer
ry Sections _I
ok I LCaneel Help | Apply |

3-45

3 Managing the Data Dictionary

3-46

You can also apply a many-to-one data type replacement mapping. For
example, in the following display:

e int32 and int are replaced with user type S32

® uint32 and uint are replaced with user type U32

® uint8 and boolean are replaced with user type U8

Note Many-to-one data type replacement does not support the char (char_T)
built-in data type. Use char only in one-to-one data type replacements.

¥, Configuration Parameters: untitled,/Configuration (Active) x|
Select: ¥ Replace data type names in the generated code =
Salver —D'ata type nam:
Data Import/Export
DFt'm'Zat_'Dn Simulink. Real-Time Warkshop Replacement
B D!agnusllcs . Mame Mame Marme
Sample Time
Data Valdity double real T I
Type Conversion
Connectiviy singls reald2 T |
o~ Compatibility 32 32T [s32
= Model Referencing
- Hardware |mplementation int18 int16_T I
- Model Referencing int8 inté_T |
- RealTime Workshap Wn@2 g2 T [uz2
i Comrments
Syrbols wintE wintlE_T |
Custom Code uintg Lintg_T Jus
baoolean boaolean_T IUB
int int_T J532
dnt uin T Juzz 7
[rata Placement
i~ Data Tppe Replacemn: char char T I
b Memary Sections
=
ok LCancel | Help | Apply |

The user-defined replacement types you specify will appear in your model’s
generated code in place of the corresponding built-in data types. For example,
if you specify user-defined data type FLOAT64 to replace built-in data type
real T (double), then the original generated code shown in Example 3:
Generated Code with real_T Built-In Data Type on page 3-47 will become the
modified generated code shown in Example 4: Generated Code with FLOAT64
Replacement Data Type on page 3-47.

Replacing Builtln Data Type Names in Generated Code

Example 3: Generated Code with real_T Built-In Data Type

/* Model initialize function */
void sinwave_initialize(void)

{

{real_T *dwork_ptr = (real_T *) &sinwave_DWork.lastSin;

Example 4: Generated Code with FLOAT64 Replacement Data Type

/* Model initialize function */
void sinwave_initialize(void)

{

{FLOAT64 *dwork_ptr = (FLOAT64 *) &sinwave_DWork.lastSin;

3-47

3 Managing the Data Dictionary

3-48

Data Type Replacement Limitations

Data type replacement does not support multiple levels of mapping. Each
replacement data type name maps directly to one or more built-in data

types.

Data type replacement is not supported for simulation target code
generation for referenced models.

Data type replacement is not supported if the GRT compatible call
interface option is selected for your model.

Data type replacement occurs during code generation for all .c, .cpp, and
.h files generated in build directories (including top and referenced model
build directories) and in the _sharedutils directory. Exceptions are as
follows:

rtwtypes.h

model sf.c or .cpp (ERT S-function wrapper)
model dt.h (C header file supporting external mode)
model_capi.c or .cpp

model_capi.h

Data type replacement is not supported for complex data types.

Many-to-one data type replacement is not supported for the char built-in
data type. Attempting to use char as part of a many-to-one mapping to a
user-defined data type introduces a violation of the MISRA-C specification.
Specifically, if char (char_T) and either int8 (int8_T) or uint8 (uint8_T)
are mapped to the same user replacement type, the result is a MISRA-C
violation. Additionally, if you try to generate C++ code, invalid implicit
type casts are made and compile-time errors may result. Use char only in
one-to-one data type replacements.

Customizing Data Object Wizard User Packages

Customizing Data Object Wizard User Packages

The Data Object Wizard (DOW) can be run in connection with a Simulink
model to quickly determine which model data are not associated with data
objects and to create and associate data objects with the data. (For more
information about the Data Object Wizard, see “Data Object Wizard” in
the Simulink documentation and “Creating Data Objects with Data Object
Wizard” on page 3-5.) If you want the wizard to use data object classes from
a package other than Simulink’s standard class package to create the data
objects, you select the package from the wizard’s Choose package for
selected data objects list. This package list can be customized in various
ways, including adding or removing packages and modifying the list order.

To register Data Object Wizard user package customizations, use the
Simulink customization file s1_customization.m. This file is a mechanism
that allows you to use M-code to perform customizations of the standard
Simulink user interface. Simulink reads the s1_customization.m file, if
present on the MATLAB path, when it starts and the customizations specified
in the file are applied to the Simulink session. For more information on the
sl customization.m customization file, see “Customizing the Simulink User
Interface” in the Simulink documentation.

Registering Data Object Wizard User Packages Using
sl_customization.m

To register Data Object Wizard user package customizations, you create
an instance of s1_customization.m and include it on the MATLAB
path of the Simulink installation that you want to customize. The

sl customization function accepts one argument: a handle to an object
called the Simulink.CustomizationManager. For example,

function sl_customization(cm)

As a starting point for your customizations, the s1_customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

3-49

3 Managing the Data Dictionary

3-50

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering DOW user
package customizations:

® addUserPackage(hObj, packageName)

addUserPackage (hObj, cellArrayOfStrings)

Adds the specified user package(s) to the top of the package list, as
displayed in the Choose package for selected data objects pull-down
list in the Data Object Wizard.

moveUserPackageToTop (hObj, packageName)

Moves the specified user package to the top of the package list, as displayed
in the Choose package for selected data objects pull-down list in the
Data Object Wizard.

moveUserPackageToEnd (hObj, packageName)

Moves the specified user package to the end of the package list, as displayed
in the Choose package for selected data objects pull-down list in the
Data Object Wizard.

removeUserPackage (hObj, packageName)
Removes the specified user package from the package list.
setUserPackages (hObj, cellArrayOfStrings)

Replaces the entire package list with a specified list of user packages.

Your instance of the s1_customization function should use these methods to
register DOW user package customizations for your Simulink installation.

Simulink reads the s1_customization.m file when it starts. If you
subsequently change the file, you must restart Simulink or enter the following
command at the MATLAB command line to effect the changes:

sl _refresh_customizations

Customizing Data Object Wizard User Packages

Example Data Object Wizard User Package
Customization Using sl_customization.m

The s1_customization.m file shown in Example 5: sl_customization.m for
DOW User Package Customizations on page 3-51 uses the following methods:

® addUserPackage to add the user packages ECoderDemos and
SimulinkDemos (present by default in the MATLAB path) to the top of the
package list, as displayed in the Choose package for selected data
objects pull-down list in the Data Object Wizard

* moveUserPackageToEnd to move SimulinkDemos to the end of the package
list

Example 5: sl customization.m for DOW User Package
Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add user packages
hObj.addUserPackage ({'ECoderDemos', 'SimulinkDemos'});

% Move SimulinkDemos to end of list
hObj.moveUserPackageToEnd('SimulinkDemos');

end

If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Data
Object Wizard. For example, you could view the customizations as follows:

1 Start MATLAB.
2 Launch a model, such as rtwdemo_udt.

3 Open Data Object Wizard, for example, by selecting Tools > Data Object
Wizard in the Simulink window.

3-51

3 Managing the Data Dictionary

4 In the Data Object Wizard dialog, click the Find button to generate a list
of one or more data objects.

5 Examine the Choose package for selected data objects drop-down list,
noting the impact of the changes specified in Example 5: sl_customization.m
for DOW User Package Customizations on page 3-51.

=15l
Unresolved data objects and data types found in analyzed model
Select each data object and data type you wish to create for the
model: rhwdemao_uck

| Object Hame | Clags | Package
I | outpout Sigrial ECoderDemos

Check Al | Uncheck Al |

Choose package for selected data objects: |3

Apply Package

hodel name: poedemo_uct Browae
Find options ————————————————{
¥ Rootinputs |V States ¥ Bl SimulinkDemas P Alas types
[Root outputs [Data stores | Parameters |

Finc | Createl Cancell Help |

To replace the entire Data Object Wizard package list with a specified list of
user packages, you can use a method invocation similar to the following:

hObj.setUserPackages({'myPackagel', 'ECoderDemos', 'mpt'});

3-52

Customizing with

Additional Options

This chapter describes the following module packaging features:

Ensuring Delimiter Is Specified for
All #Includes (p. 4-2)

Adding Custom Comments (p. 4-3)

Adding Global Comments (p. 4-5)

Selecting Persistence Level for
Signals and Parameters (p. 4-10)

Explains how to instruct the code
generator to use the angle-bracket
delimiter for all data objects whose
Header file property has no delimiter
specified.

Explains how to add the selected
data object’s property values as a
comment in the general code above
that data object’s identifier.

Explains how to add a comment

to the model so that the comment
appears in the generated files where
desired.

Controls the persistence level
of signal and parameter objects
associated with a model.

4 Customizing with Additional Options

Ensuring Delimiter Is Specified for All #Includes

Understanding the purpose of this procedure requires understanding the
Header file property of a data object, described in Parameter and Signal
Property Values on page A-19, and applied in “Creating mpt Data Objects,
Setting Property Values, and Generating Code” on page 3-14. For a particular
data object, you can specify as the Header file property value a .h filename
where that data object will be declared. Then, in the IncludeFile section

of the generated file, this .h file is indicated in a #include preprocessor
directive.

Further, when specifying the filename as the Header file property value, you
may or may not place it within the double-quote or angle-bracket delimiter.
That is, you can specify it as filename.h, "filename.h", or <filename.h>.
The code generator finds every data object for which you specified a filename
as its Header file property value without a delimiter. By default, it assigns
to each of these the double-quote delimiter.

This procedure allows you to specify the angle-bracket delimiter for these
instead of the default double-quote delimiter. See the figure below.

1 In the #include file delimiter field on the Data Placement pane of the
Configuration Parameters dialog box, select #include <header.h> instead
of the default #include "header.h".

2 Click Apply.

Real-Time Woikshop
amments | Symbols | Custom Code | Debug | Interface | Templates | DataPlacement 1| »

—Global data placement [custom storage classes only)

D ata definition I Data defined in a single separate source file ﬂ

Data definition filename: Iglohal

D ata declaration: I D ata declared in 3 single separate heads: file ;I

D ata declaration filename: | global
I Hinclude file delimiter: Hinclude <headerh: LI I

—Global data placement [MPT data objects only]

Module naming Mat specified -

Signal dizplay level: 10 Parameter tune level: |10
Source of initial values'l Madel ﬂ
¥ Generate cods only Generate :odel
e T I P |

Adding Custom Comments

Adding Custom Comments

This procedure allows you to add a comment just above a signal or parameter’s
identifier in the generated code. This is accomplished using

¢ A function that you write in M-code or TLC-code and savein a .mor .tlc file

¢ The Custom comments (MPT objects only) check box on the Comments
pane of the Configuration Parameters dialog box

e Selecting the .m or .tlc file in the Custom comments function field on
the Comments pane of the Configuration Parameters dialog box.

You may include at least some or all of the property values for the data
object. Each Simulink data object (signal or parameter) has properties, as
described in Parameter and Signal Property Values on page A-19. This
example comment contains some of the property values for the data object MAP
as specified on the Model Explorer:

/* DocUnits: PSI */
/* Owner: */
[* DefinitionFile: specialDef */

real_ T MAP = 0.0;

You can type text in the Description field on the Model Explorer for a signal
or parameter data object. If you do, and if you select the Simulink data
object descriptions check box on the Comments pane of the Configuration
Parameters dialog box, this text will appear beside the signal’s or parameter’s
identifier in the generated code as a comment. This is true whether or not
you select the Custom comments (MPT objects only) check box discussed
in this procedure. For example, typing Manifold Absolute Pressure in the
Description field for the data object MAP always will result in the following
in the generated code:

real T MAP = 0.0; /* Manifold Absolute Pressure */

1 Write a function in M-code or TLC-code that places comments
in the generated files as desired. An example .m file
named rtwdemo_comments_mptfun.m is provided in the
matlab/toolbox/rtw/rtwdemos directory. This file contains instructions.

4 Customizing with Additional Options

The M-code function must have three arguments that correspond to
objectName, modelName, and request, respectively. The TLC-code must
have three arguments that correspond to objectRecord, modelName, and
request, respectively. Note also, in the case of the TLC file, you can use the
library function LibGetSLDataObjectInfo to get every property value of
the data object.

2 Save the function as a .m file or a .tlc file with the desired filename and
place it in any folder in the MATLAB path.

3 Open the model and the Configuration Parameters dialog box.

4 Click Comments under Real-Time Workshop on the left pane. The
Comments pane appears on the right.

5 Select the Custom comments (MPT objects only) check box.

6 In the Custom comments function field, either type the filename of the
.m file or .tlc file you created, or select this filename using the Browse
button.

7 Click the Apply button.
8 Click Generate Code.

9 Open the generated files and inspect their content to ensure the comments
are what you want.

Adding Global Comments

Adding Global Comments

This procedure allows you to add a comment to the model so that the comment
appears in the generated file or files where desired. This is accomplished by
specifying a template symbol name with a Simulink DocBlock, a Simulink
Annotation, or a Stateflow Note. For details on template symbols, see “MPF
Template Symbols and Rules” on page A-10.

Note Template symbol names Description and ModifiedHistory,
referenced below, also are fields in the Model Properties dialog box. If you use
one of these symbol names for global comment text, and its Model Properties
field has text in it too, both will appear in the generated files.

Using a Simulink DocBlock to Add the Comment

1 With the model open, select Library Browser from the View menu.

2 Drag the DocBlock from Model-Wide Utilities in the Simulink library
onto the model.

3 After double-clicking the DocBlock and typing the desired comment
in the editor, save and close the editor. See DocBlock in the Simulink
documentation for details.

4 Right-click the DocBlock and select Mask Parameters. The Block
Parameters dialog box appears.

4-5

4 Customizing with Additional Options

4-6

5 Type one of the following Documentation child into the RTW Embedded

Coder Flag field, illustrated below, and then click OK: Abstract,
Description, History, ModifiedHistory, or Notes. Template symbol

names are case sensitive.

E! Block Parameters: DocBlock x|

—DacBlock (mask] [link]

Uze thiz block to save long descriptive text with the model. Double-clicking the block,
will open an editar.

P,

F T Embedded Coder Flag
Abstract

Document Typel Teut LI

arK I LCancel | Help | Apply

In the Block Properties dialog box, Block Annotation tab, select
%<ECoderFlag> as shown in the figure below, and then click OK. The
symbol name typed in the previous step now appears under the DocBlock

on the model.

) Block Properties: (link)DocElock _IEI ﬂ
General | Block Annotation | Callbacks |

Usage

Text that appears below the block's lakel. Erter the text in the ahnotation
field. The text may Include any of the block property tokens in the Block
property tokens list. Simulink replaces each token with the value of the
carresponding property inthe genersted ahhotation. Click the == button to
enter the selected token in the annatation field. Text can be edited on the
right sidle edit field. See example syntax on the botom.

Block property tokens: Enter text and tokens for annotation:

WeincestorBlock= . il Y=ECoderFlag= ;I
#=BackgroundColor= " |
(%=BlockChoice=
[e=BlockDescription:=
Hh=BlockType=
H=CheckFochnCallhplne =
=DataTypeCverrice:
W =DataTypeCyearrice_
[%e=Description=
H=Diaghostics=
=DocLnertType:s
[Fa=DropShadoyw=

Fo=ErrarFon= LI
=ForegroundColars=
% =FunctionithSepar ¥ Example syhta:

1 | | 2 Mame=%=MName=

ok | cancal Help Apply

Adding Global Comments

7 Save the model. After you generate code, the code generator places the
comment in each generated file whose template has the symbol name you
typed. The code generator places the comment in the generated file at
the location that corresponds to where the symbol name is located in the
template file.

8 To add one or more other comments to the generated files, repeat steps 1
through 7 as desired.

Using a Simulink Annotation to Add the Comment

1 Double-click the unoccupied area on the model where you want to place the
comment. See “Annotating Diagrams” in the Simulink documentation for
details.

Note If you want the code generator to sort multiple comments for the
Notes symbol name, replace the next step with “Using Sorted Notes to
Add Comments” on page 4-8.

2 Type <S:Symbol _name> followed by the comment, where Symbol name is one
of the following Documentation child : Abstract, Description, History,
ModifiedHistory, or Notes. For example, type <S:Description>This is
the description I want. Template symbol names are case sensitive.
(The "S" before the colon indicates "symbol.")

3 Click outside the rectangle and save the model. After you generate code, the
code generator places the comment in each generated file whose template
has the symbol name you typed. The code generator places the comment
in the generated file at the location that corresponds to where the symbol
name is located in the template file.

4 To add one or more other comments to the generated files, repeat steps 1
through 3 as desired.

4-7

4 Customizing with Additional Options

Using a Stateflow Note to Add the Comment

1 Right-click the desired unoccupied area on the Stateflow chart where you
want to place the comment. See “Using Notes to Extend Chart Diagrams”
in the Stateflow documentation for details.

2 Select Add Note from the drop down menu.

Note If you want the code generator to sort multiple comments for the
Notes symbol name, replace the next step with "Using Sorted Notes To
Add Comments" below.

3 Type <S:Symbol name> followed by the comment, where Symbol name is one
of the following Documentation child : Abstract, Description, History,
ModifiedHistory, or Notes. For example, type <S:Description>This is
the description I want. Template symbol names are case sensitive.

4 Click outside the note and save the model. After you generate code, the
code generator places the comment in each generated file whose template
has the symbol name you typed. The code generator places the comment
in the generated file at the location that corresponds to where the symbol
name is located in the template file.

5 To add one or more other comments to the generated files, repeat steps 1
through 4 as desired.

Using Sorted Notes to Add Comments

The sorted-notes capability allows you to add automatically sorted comments
to the generated files. The code generator places these comments in each
generated file at the location that corresponds to where the Notes symbol is
located in the template file.

The sorting order the code generator uses is

® Numbers before letters
®* Among numbers, 0 is first

* Among letters, uppercase are before lowercase.

Adding Global Comments

You can use sorted notes either with a Simulink annotation or a Stateflow

note, but not with a Do

cBlock:

¢ In the Simulink annotation or the Stateflow note, type <S:NoteY> followed
by the first comment, where Y is a number or letter.

® Repeat for as many additional comments you want, except replace Y with a
subsequent number or letter.

The figure below illustrates sorted notes on a model, and where the code
generator places each in a generated file.

E!ecdemo 1*

File Edit “iew Simulation Format

=10]

Tools Help

it uintg
NC | + — LIMIT
+./ sum_out uints
F Y
<5:Noteb>This iz the third comment.
equal_to_count |Poolean
¥
Tyint32 4 [int32 B
1 INPUT OUTPUT
uirts | 5 switch_out Amplifier
¥ <5:Note1=Thisis the first comment | want
<%:MoteZ=Thisisthe second comment | want under Notes. azsocisted with the Notes symbal.
| |

Here is the relevant fragment from the generated file for the above model:

** NOTES

** Notel: This is

the first comment I want

associated with the Notes symbol.
Note2: This is the second comment I want under Notes.
Noteb: This is the third comment.

4-9

4 Customizing with Additional Options

4-10

Selecting Persistence Level for Signals and Parameters

With this procedure, you can control the persistence level of signal and
parameter objects associated with a model. Persistence level allows you to
make intermediate variables or parameters global during initial development.
At the later stages of development, you can use this procedure to remove
these signals and parameters for efficiency. Notice the Persistence Level
field on the Model Explorer, as illustrated in the figure below. For descriptions
of the properties on the Model Explorer, see Parameter and Signal Property
Values on page A-19. Notice also the Signal display level and Parameter
tune level fields on the Configuration Parameters dialog box, as illustrated
in the next figure.

Real-Time Workzhop

amments | Symbalz I Custom Code I Debug I Interface | Templates

Global data placement [custom storage claszes only]

Drata definition: I Data defined in a single separate source file

[rata definition filename: |gIDbaI

[rata declaration: I Data declared in a single separate header file

[rata declaration filename: Iglnbal

Hinclude file delimiter: I At

Global data placement [MPT data objects anly)

Madule naming: Nat specified '[
I Signal display lewvel 10 Parameter tune level: [10 I
Source of intial values: | Model LI

v Generate code only Generate cndel

Fievert | Help | Lpply |

V.

The Signal display level field allows you to specify whether or not the code
generator defines a signal data object as global data in the generated code.
The number you specify in this field is relative to the number you specify in
the Persistence level field. The Signal display level number is for all mpt
signal data objects in the model. The Persistence level number is for a

Selecting Persistence Level for Signals and Parameters

particular mpt signal data object. If the data object’s Persistence level is
equal to or less than the Signal display level, the signal appears in the
generated code as global data with all of the properties (custom attributes)
specified in “Creating mpt Data Objects, Setting Property Values, and
Generating Code” on page 3-14. For example, this would occur if Persistence
level is 2 and Signal display level is 5.

Otherwise, the code generator automatically determines how the particular
signal data object appears in the generated code. Depending on the settings
on the Optimization pane of the Configuration Parameters dialog box,

the signal data object could appear in the code as local data and thus have
none of the custom attributes you specified for that data object. Or, based on
expression folding, the code generator could remove the data object so that it
does not appear in the code. (See “Tips for Optimizing the Generated Code” in
the Real-Time Workshop Embedded Coder documentation and “Optimizing

a Model for Code Generation” in the Real-Time Workshop documentation

for details on optimization.)

The Parameter tune level field allows you to specify whether or not the
code generator declares a parameter data object as tunable global data in the
generated code.

The number you specify in this field is relative to the number you specify in
the Persistence level field. The Parameter tune level number is for all mpt
parameter data objects in the model. The Persistence level number is for a
particular mpt parameter data object. If the data object’s Persistence level
is equal to or less than the Parameter tune level, the parameter appears
in the generated code with all of the properties (custom attributes) specified
in “Creating mpt Data Objects, Setting Property Values, and Generating
Code” on page 3-14, and thus is tunable. For example, this would occur if
Persistence level is 2 and Parameter tune level is 5.

Otherwise, the parameter is inlined in the generated code, and Real-Time
Workshop settings determine its exact form.

Note that, in the initial stages of development, you may be more concerned
about debugging than code size. Or, you may want to ensure that one or
more particular data objects appear in the code so that you can analyze
intermediate calculations of an equation. In this case, you may want to
specify the Parameter tune level (Signal display level for signals) to be

4-11

4 Customizing with Additional Options

4-12

higher than Persistence level for some or all mpt parameter (or signal) data
objects. This results in larger code size, because the code generator defines
the parameter (or signal) data objects as global data, which have all the
custom properties you specified. As you approach production code generation,
however, you may have more concern about reducing the size of the code

and less need for debugging or intermediate analyses. In this stage of the
tradeoff, you could make the Parameter tune level (Signal display level
for signals) greater than Persistence level for one or more data objects,
generate code and observe the results. Repeat until satisfied.

1 With the model open, in the Configuration Parameters dialog box, click
Data Placement under Real-Time Workshop.

2 Type the desired number in the Signal display level or Parameter tune
level field, and click Apply.

3 In the Model Explorer, type the desired number in the Persistence field
for the selected signal or parameter, and click Apply.

4 Save the model and generate code.

Managing File Placement
of Data Definitions and
Declarations

Overview of File Placement (p. 5-2) Identifies MPF selections that are
interdependent, and explains how
these manage file placement of data
definitions and declarations.

Priority and Usage (p. 5-3) Identifies the priorities that exist
among the interdependent MPF
selections, and their frequency of
use.

Data Placement Rules (p. 5-9) Provides a complete set of data
placement rules.

Example Settings (p. 5-9) Provides example settings of the
interdependent selections, and
explanations of their results.

5 Managing File Placement of Data Definitions and Declarations

5-2

Overview of File Placement

This chapter focuses on interdependent selections. Their combined settings,
along with the Simulink partitioning, determine what is termed "data
placement." This term refers to

The number of files generated.

Whether or not the generated files contain definitions for a model’s global
identifiers. And, if a definition exists, the settings determine the files in
which MPF places them.

Where MPF places global data declarations (extern).

The following six MPF selections are distributed among the main procedures
and form an important interdependency:

The Data definition field on the Data Placement pane of the
Configuration Parameters dialog box.

The Data declaration field on the Data Placement pane of the
Configuration Parameters dialog box.

The Owner field of the data object on the Model Explorer, and the Module
naming and Module name fields on the Data Placement pane of the
Configuration Parameters dialog box. For discussion purposes, we use

the term "Ownership" to refer to these three (Owner, Module naming,
and Module name)

The Definition file field of the data object on the Model Explorer.
The Header file field of the data object on the Model Explorer.
The Memory section field of the data object on the Model Explorer.

Priority and Usage

Priority and Usage

There is a priority among the interdependent selections. From highest to
lowest priority, these are called

¢ Definition File priority
¢ Header File priority
® Ownership priority

e Read-Write priority or Global priority

But as to usage, the order is reversed. This distinction is illustrated below.

Qverride Globol or Rend-Write
for selected doto objec.

./

Highest priority Lenst used

A

Definition File

Heuder File

Ownership

Reud-Write Global Y

Lowest priority Most used

Unless they are overridden, the Read-Write and Global priorities place in the
generated files all of the model’s MPF-derived data objects that you selected
using the Data Object Wizard. (See “Creating Data Objects with Data Object
Wizard” on page 3-5 for details.) Before generating the files, you can use the
higher priority Definition file, Header file, and Ownership, as desired, to
override Read-Write or Global priorities for single data objects. Most users
will employ Read-Write or Global, without an override. A few users, however,
will want to do an override for certain data objects. We expect that those users
whose applications include multiple modules will want to use the Ownership
priority.

5 Managing File Placement of Data Definitions and Declarations

The priorities are in effect only for those data objects that are derived

from Simulink.Signal and Simulink.Parameter, and whose custom
storage classes are specified using the Custom Storage Class Designer.

(For details, see “Designing Custom Storage Classes” in the Real-Time
Workshop Embedded Coder documentation.) Otherwise, Real-Time Workshop
determines the data placement.

Read-Write Priority

This is the lowest priority. Consider that a model consists of one or more
Simulink blocks or Stateflow diagrams. There can be subsystems within
these. For the purpose of illustration, think of a model with one top-level block
called fuelsys. You double-clicked the block and now see three subsystems
labeled subsys1, subsys2 and subsys3, as shown in the next figure. Signals
a and b are outputs from the top-level block (fuelsys). Signal a is an input
to subsys1 and b is input to subsys2. Signal c is an output from subsys1.
Notice the other inputs and outputs (d and e). Signals a through e have
corresponding data objects and are part of the code generation data dictionary.

As explained in Chapter 3, “Managing the Data Dictionary” MPF provides
you with the means of selecting a data object that you want defined as an
identifier in the generated code. MPF also allows you to specify property
values for each data object. For this illustration, we choose to include all of
the data objects to be in the dictionary.

Model

[

subsysd [—mm- e

e}

a b

A4

fuelsys

Priority and Usage

The Generated Files

We generate code for this model. As shown in the figure below, this results in a
. ¢ source file corresponding to each of the subsystems. (In actual applications,
there could be more than one .c source file for a subsystem. This is based on
the file partitioning previously selected in Simulink for the model. But for
our illustration, we only need to show one for each subsystem.) Data objects a
through e have corresponding identifiers in the generated files.

A .c source file has one or more functions in it, depending on the internal
operations (functions) of its corresponding subsystem. An identifier in a
generated .c file has local scope when it is used only in one function of that
.c file. An identifier has file scope when more than one function in the same
.c file uses it. An identifier has global scope when more than one of the
generated files uses it.

A subsystem’s source file always contains the definitions for all of that
subsystem’s data objects that have local scope or file scope. (These definitions
are not shown in the figure.) But where are the definitions and declarations
for data objects of global scope? These are shown in the next figure.

Model Generated Files
Results of Read-Write Priority

a—- subsysi.c subsys3.c

int c; int e;

< extern int a; extern int c;

subsysd |—me e extern int d;

d
subsys2.c fuelsys.c

b subsys? ik - z
int d; int a;
extern int b; int b;

!

fuelsys

When the Read-Write priority is in effect, this source file contains the
definitions for the subsystem’s global data objects, if this is the file that first
writes to the data object’s address. Other files that read (use) that data object
only include a reference to it. This is why this priority is called Read-Write.
Since a read and a write of a file are analogous to input and output of a

5 Managing File Placement of Data Definitions and Declarations

model’s block, respectively, there is another way of saying this. The definitions
of a block’s global data objects are located in the corresponding generated file,
if that data object is an output from that block. The declarations (extern) of a
block’s global data objects are located in the corresponding generated file, if
that data object is an input to that block.

Settings for Read-Write Priority

The generated files and what they include, as just described, occur when the
Read-Write priority is in effect. For this to be the case, the other priorities are
"turned off." That is

¢ The Data definition field on the Data Placement pane is set to Data
defined in source file.

¢ The Data declaration field on the Data Placement pane is set to Data
declared in source file.

¢ The Owner field on the Model Explorer is blank, and the Module naming
field on the Data Placement pane is set to Not specified. (When Not
specified is selected, the Module name field does not appear.)

¢ Definition file and Header file on the Model Explorer are blank.

Global Priority

This has the same priority as Read-Write (the lowest) priority. The settings
for this are the same as for Read-Write Priority, except

¢ The Data definition field on the Data Placement pane is set to Data
defined in single separate source file.

¢ The Data declaration field on the Data Placement pane is set to Data
declared in single separate header file.

The generated files that result are shown in the next figure. A subsystem’s
data objects of local or file scope are defined in the .c source file where the
subsystem’s functions are located (not shown). The data objects of global
scope are defined in another .c file (called global.c in the figure). The
declarations for the subsystem’s data objects of global scope are placed in a .h
file (called global.h).

Priority and Usage

For example, all data objects of local and file scope for subsys1 are defined
in subsys1.c. Signal ¢ in the model is an output of subsys1 and an input

to subsys2. So c is used by more than one subsystem and thus is a global

data object. Since global priority is in effect, the definition for ¢ (int c;) is
in global.c. The declaration for ¢ (extern int c;)is in global.h. Since
subsys2 uses (reads) c, #include "global.h" isin subsys2.c.

Model Generated Files
Results of Global Priority

a—- subsys1.c subsys3.c

#include 'global.h'l |#1nclude ‘global.h’

c
subsysd [—mm
a subsys2.c fuelsys.c
|#1nclude 'global.h" | |#1nclude 'global.h'l
b
- ; global.c global.h
* int a; extern int a;
4 int by; extern int b;
fuelsys int c;. extern int c;
int d; extern int d;
int e; extern int eg;

Remaining Priorities

As mentioned previously, the Read-Write and Global priorities operate on all
MPF-derived data objects that you want defined in the generated code. The
remaining priorities allow you to override the Read-Write or Global priorities
for one or more particular data objects. There is a high-to-low priority among
these remaining priorities: Definition File, Header File, and Ownership, for a
particular data object.

Ownership

As mentioned previously, Ownership refers to what you do or do not specify
for the Module naming and Module names fields on the Data Placement
pane of the Configuration Parameters dialog box, and the Owner field on the
Model Explorer. These settings have no effect on what files are generated.

5 Managing File Placement of Data Definitions and Declarations

Their effects only have to do with definitions and extern statements. There
are five possible configurations, as indicated in Effects of Ownership Settings
on page A-29.

The Memory Section Setting

Regarding Memory section, Parameter and Signal Property Values on

page A-19 explains that you can select Default, MemConst, MemVolatile

or MemConstVolatile as the Memory section selection. So, if you specify

a filename for Definition file, and select either Default, MemConst,
MemVolatile or MemConstVolatile for Memory section, Real-Time
Workshop Embedded Coder generates a .c file and a .h file. The .c file
contains the definition for the data object with the pragma statement or
qualifier associated with the Memory section selection. The .h file contains
the declaration for the data object. Then the .h file, with the preprocessor
directive #include, can be included in any file that needs to reference the data
object. You can add more memory sections. See “Designing Custom Storage
Classes” in the Real-Time Workshop Embedded Coder documentation.

Data Placement Rules

Data Placement Rules

For a complete set of data placement rules in convenient tabular form, based
on the priorities discussed in this chapter, see “Data Placement Rules and
Effects” on page A-29.

Example Settings

Example Settings and Resulting Generated Files on page A-30, provides
example settings for one data object of a model. Eight examples are listed so
that you can see the generated files that result from a wide variety of settings.
Four examples from this table are discussed below in more detail. These
discussions provide adequate information for understanding the effects of
any settings you might choose. For illustration purposes, the four examples
assume that we are dealing with an overall system that controls engine idle
speed.

The next figure shows that the software component of this example system
consists of two modules, IAC (Idle Air Control), and IO (Input-Output).

TAC (Idle Air Control) Module IO Module

(External to MPF)
Generated File for Chart spd_filt

Depends on MPF Settings /* Definitions*/

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

Generated File for Chart iac_ctrl o.h

/* External Data */
Depends on MPF Settings extern real T meas_spd;

extern real T iac_cmad;

Engine Idle Speed Control System

5 Managing File Placement of Data Definitions and Declarations

5-10

The code in the 10 module controls the system’s IO hardware. Code is
generated only for the IAC module. (Some other means produced the code for
the 10 module, such as hand-coding.) So the code in IO is external to MPF,
and can illustrate legacy code. To simplify matters, the IO code contains one
source file, called I0.c, and one header file, called I0.h.

The IAC module consists of two Stateflow charts, spd_filt and iac_ctrl.
The spd_filt chart has two signals (meas_spd) and filt spd), and one
parameter (a). The iac_ctrl chart also has two signals (filt spd and
iac_cmd) and a parameter (ref_spd). (The parameters are not visible in the
top-level charts.) One file for each chart is generated. This example system
allows us to illustrate referencing from file to file within the MPF module,
and model to external module. It also illustrates the case where there is no
such referencing.

=10]

File Edit Yiew Simulation Format Tools Help

Dlﬁné|%ﬁ|9Q|} II'IU.U INolmaI 'I|E

meas_sp@ fitt_spd

=pd_filt

Outz

iac_ctrl

Ready 100%, oded5
A

Proceed to the discussion of the desired example settings:

¢ “Read-Write Example” on page 5-11
® “Ownership Example” on page 5-12
¢ “Header File Example” on page 5-13
¢ “Definition File Example” on page 5-15

Example Settings

Read-Write Example

These settings and the generated files that result are shown as Example
Settings 1 in Example Settings and Resulting Generated Files on page A-30.
As you can see from the table, this example illustrates the case in which only
one .c source file (for each chart) is generated.

So, for the TAC model, select the following settings. Accept the Data defined
in source file in the Data definition field and the Data declared in
source file in the Data declaration field on the Data Placement pane of
the Configuration Parameters dialog box. Accept the default Not specified
selection in the Module naming field. Accept the default blank settings for
the Owner, Definition file and Header file fields on the Model Explorer.
For Memory section, accept Default. Now the Read-Write priority is in
effect. Generate code. The next figure shows the results in terms of definition
and declaration statements.

IAC (Idle Air Control) Module IO Module

(External to MPF)
Generated File for Chart spd_filt

spd_filt.c

- — "
#* Definitions */ /* Definitions */f

const real T a = 0.9;
real T filt spd = 0.0;

real T meas_spd = 0.0;

real T iac_cmd = 0.0;
real T meas spd = 0.0;

I0.h

iac_ctrl.c

/* External Data */

extern real T meas_spd;

/* Definitions */
const real T ref spd = 0.0;
real T iac_omd = 0.0; extern real T iac_cmd;

/* Declarations */

extern real T filt_spd;

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Generated Files for Chart iac_ctrl |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Engine Idle Speed Control System (Read-Write Example)

The code generator generated a spd_filt.c for the spd_filt chart and
iac_ctrl.c for the iac_ctrl chart. As you can see, MPF placed all definitions
of data objects for the spd_filt chart in spd_filt.c. It placed all definitions
of data objects for the iac_ctrl chart in iac_ctrl.c.

5-11

5 Managing File Placement of Data Definitions and Declarations

5-12

However, notice real T filt spd. This data object is defined in spd_filt.c
and declared in iac_ctrl.c. That is, since the Read-Write priority is in
effect, filt spd is defined in the file that first writes to its address. And, it is
declared in the file that reads (uses) it. Further, real T meas_spd is defined
in both spd_filt.c and the external I0.c. And, real T iac_cmd is defined
in both iac_ctrl.c and IO.c.

Ownership Example

See tables Effects of Ownership Settings on page A-29 and Example Settings
and Resulting Generated Files on page A-30. In the “Read-Write Example”
on page 5-11, there are several instances where the same data object is
defined in more than one .c source file, and there is no declaration (extern)
statement. This would result in compiler errors during link time. But in
this example, we configure MPF Ownership rules so that adequate linking
can take place. Notice the Example Settings 2 row in Example Settings and
Resulting Generated Files on page A-30. Except for the Ownership settings,
assume these are the settings you made for the model in the IAC module.
Since this example has no Definition file or Header file specified, now
Ownership takes priority. (If there were a Definition file or Header file
specified, MPF would ignore the Ownership settings.)

On the Data Placement pane of the Configuration Parameters dialog box,
select User specified in the Module naming field, and specify IAC in the
Module name field (case sensitive). Open the Model Explorer (by issuing
the MATLAB command daexplr) and, for all data objects except meas_spd
and iac_cmd, type IAC in the Owner field (case sensitive). Then, only for the
meas_spd and iac_cmd data objects, type IO as their Owner (case sensitive).
Generate code.

Example Settings

The results are shown in the next figure. Notice the extern real T meas_spd
statement in spd_filt.c, and extern real_T iac_cmdin iac_ctrl.c.
MPF placed these declaration statements in the correct files where these data
objects are used. This allows the generated source files (spd_filt.c and

iac_ctrl.c) to be compiled and linked with I0.c without errors.

IAC (Idle Air Control) Module

Generated File for Chart spd_filt
spd_filt.c
/* Definitions */
const real T a = 0.9;
real T filt_spd = 0.0;

/* Declarations */

extern real T meas_spd;

Generated File for Chart iac_ctrl

iac_ctrl.c

/* Definitions >/
const real T ref spd = 0.0;
/* Declarations */

extern real T filt spd;

extern real T iac_cmd;

10 Module
(External to MPF)

/* Definitions */
real T meas spd = 0.0;

real T iac_cmd = 0.0;

I0.h

/* External Data */
extern real T meas_spd;

extern real T iac cmd;

Engine Idle Speed Control System (Ownership Example)

Header File Example

These settings and the generated files that result are shown as Example
Settings 3 in Example Settings and Resulting Generated Files on page A-30.
Since this example has no Definition file specified, it allows us to describe
the effects of the Header file setting. (If there were a Definition file, MPF
would ignore the Header file setting.) The focus of this example is to show
how the Header file settings result in the linking of the two chart source files
to the external IO files, shown in the next figure. (Also, Ownership settings
will be used to link the two chart files with each other.)

As you can see in the figure, the meas_spd and iac_cmd identifiers are defined
in I0.c and declared in I0.h. Both of these identifiers are external to the
generated .c files. You open the Model Explorer and select both the meas_spd

5-13

5 Managing File Placement of Data Definitions and Declarations

and iac_cmd data objects. For each of these data objects, in the Header file
field, specify I10.h, since this is where these two objects are declared. This
setting ensures that the spd_filt.c source file will compile and link with
the external I0.c file without errors.

Now we configure the Ownership settings. In the Model Explorer, select the
filt spd data object and set its Owner field to IAC. Then, on the Data
Placement pane of the Configuration Parameters dialog box, select User
specified in the Module naming field, and specify IAC in the Module
Name field. This ensures that the spd_filt source file will link to the
iac_ctrl source file. Generate code. See the figure below.

IAC (Idle Air Control) Module IO Module
r,o oo ? (External to MPF)
Generated File Chart spd_filt
spd filt.c r B
— I10.c

/* Includes */

#include <I0.h> /* Definitions */

/= Definitions *f real T meas_spd = 0.0;
const real T a = 0.9;

real T filt_spd = 0.0;

real T iac_cmd = 0.0;

Generated File Chart iac_ctrl fo.h

lac_ctrl.c

/* External Data *f

extern real T meas_spd;

/* Includes */
#include <I0.h>
J* Definitions =/ extern real T iac_cmd;

const real T ref_spd = 0.0;

/* Declarations */

extern real T filt_spd;

Engine Idle Speed Control System [Header File Example)

Since you specified the I0.h filename for the Header file field for the
meas_spd and iac_ctrl objects, the code generator assumed correctly that
their declarations are in I0.h. So the code generator placed #include I0.hin
each source file: spd_filt.c and iac_ctrl.c. So these two files will link with
the external IO files. Also, due to the Ownership settings that were specified,
the code generator places the real T filt spd = 0.0; definition in

5-14

Example Settings

spd_filt.c and declares the filt spd identifier in iac_ctrl.c with extern
real T iac_cmd;. Consequently, the two source files will link together.

Definition File Example

These settings and the generated files that result are shown as Example
Settings 4 in Example Settings and Resulting Generated Files on page A-30.
Notice that a definition filename is specified. The settings in the table only
apply to the data object called a. You have decided that you do not want this
object defined in spd_filt.c, the generated source file for the spd_filt
chart. (There are many possible organizational reasons one might want an
object declared in another file. It is not important for this example to specify
the reason.)

For this example, assume the settings for all data objects are the same as those
indicated in “Header File Example” on page 5-13, except for the data object a.
The description below identifies only the differences that result from this.

Open the Model Explorer, and select data object a. In the Definition file field
you specify any desired filename. Choose filter_ constants.c. Generate
code. The results are shown in the next figure.

TAC (Idle Air Control) Module 10 Module

—————————————— (External to MPF)
Generated Files for Chart spd_ctrl

spd_filt.c

/* Includes */

#include “IO0.h”

#include “filter_constants.h”
/*Definitions*/

real T filt_spd = 0.0;

/* Definitions */
real T meas_spd = 0.0;
real_T iac_cmd = 0.0;

filter_constants.c

/* Definitions */
const real T a= 0.9;

/* External Data */
extern real T meas_spd;
extern real T iac_cmd;

/* Declarations */
extern real T a;

Generated Files for Chart iac_ctrl
iac_ctrl.c

/* Includes */

#include <IO0.h>

/* Definitions */

const real T ref_spd = 0.0;
/* Declarations */

extern real T filt_spd;
extern real T iac_cmd;

i |
| |
| - '
|
| -
|
| -
|
| |
I I
| |
I I
| |
I I
| |
I I
| -
| 10.h |
| global.h | | |
| | |
| |
I I
| |
I I
| |
I I
| |
I I
| |
| |
| |
| |
| |
| |

Engine Idle Speed Control System (Definition File Example)

5-15

5 Managing File Placement of Data Definitions and Declarations

The code generator generates the same files as in the “Header File Example”
on page 5-13, and adds a new file, filter_constants.c. Data object a now is
defined in filter constants.c, rather than in the source file spd_filt.c,
as it is in the example. This data object is declared with an extern statement
in global.h

5-16

Referenced Tables

MPF Panes on the Configuration
Parameters Dialog Box (p. A-2)

MPF Template Symbols and Rules
(p. A-10)

mpt Parameter and Signal
Properties (p. A-18)

Data Placement Rules and Effects
(p. A-29)

Lists and describes elements

on MPF-related panes of the
Configuration Parameters dialog
box.

Lists and describes all MPF template
symbols and rules.

Lists and describes mpt parameter
and signal properties and property
values, and illustrates how changing
these affect the generated code.

Shows the effects that changes to the
interdependent MPF settings have

on the generated code and provides a
complete set of data placement rules.

A Referenced Tables

A-2

MPF Panes on the Configuration Parameters Dialog Box

The following tables define elements on each MPF-related pane on the
Configuration Parameters dialog box. Elements that are not related to MPF
are not described. Select Real-Time Workshop on the Select pane.

MPF Elements on Configuration Parameters Panes

Pane Element Description
General Ignore custom storage | To make module packaging features available, this
classes check box must be cleared.
Comments Simulink data object | When this check box is selected, and you type text in
descriptions the Description field of the Model Explorer, that text
will appear beside the signal’s or parameter’s identifier
in the generated code as a comment.
Custom comments | When selected, this check box allows you to add a
(MPT objects only) | comment above a signal or parameter’s identifier in the
generated code. You control the content of the comment
by writing a function in M-code (.m file) or TLC-code
(.tlc file), and specifying its filename in the Custom
comments function field.
Custom comments | In this field, you specify the .m filename or .tlc
function filename that contains the function mentioned just
above. This field is available only when the Custom
comments (MPT objects only) check box is selected.
Symbols #define naming This rule applies only to those parameters whose storage

class you selected as Define in “Creating mpt Data
Objects, Setting Property Values, and Generating Code”
on page 3-14. Allows you to specify one rule by which all
of these parameters change the same way. Then, they
appear as identifiers in the generated code as you want.

MPF Panes on the Configuration Parameters Dialog Box

MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

For example, in “Creating mpt Data Objects, Setting
Property Values, and Generating Code” on page 3-14, a
parameter is named parama. For this parameter, you
specified Define (Custom) in the Storage class field of
the Model Explorer, and you specified its Value property
as "1." So, in terms of ANSI-C/C++ syntax, you have
said #define parama 1;. Now you select Force upper
case in the #define naming field of the Symbols
pane of the Configuration Parameters dialog box. The
result of all of this is as follows. "PARAMA" appears in
the generated code file every time this parameter name
appears. In the compiled executable file, "1" appears
every time "PARAMA" appears in the generated code file.

In the #define naming field, select Custom M-function
to write your own naming rule that changes all of these
parameter names in the model to identifiers in the
generated code, in the same way. Then you must write
an M-function to accomplish this. For details on writing
a MATLAB function, see “Functions” in the MATLAB
documentation.

Of course, there is a wide variety of possibilities. Some
examples are
¢ Remove all underscore characters in all signal names

® Add underscores before a capital letter in all
parameter names

® Make all identifiers in the generated code uppercase

A-3

A Referenced Tables

MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

Then you save the function as a .m file, place it in any
folder in the MATLAB path, and type its filename in the
M-function field under the #define naming field.

Select Force upper case or Force lower case to
change case as desired.

Select None to make no change to the #define names.
With this selection, after code generation, all of them
will appear as identifiers in the source code exactly as
they appear in the model.

M-function If you selected Custom M-function in the #define
naming field, place the name of the .m file here, with or
without the .m extension. Otherwise, ignore this field.

Parameter naming | Allows you to specify one rule by which all of the model’s
parameter names change the same way, so that they
appear as identifiers in the generated code as you want.
The selections in this field have the same functions

as described above for #defines, except they apply to
parameter names.

M-function If you selected Custom M-function in the Parameter
naming field, place the name of the .m file here, with or
without the .m extension. Otherwise, ignore this field.

Signal naming Allows you to specify one rule by which all of the model’s
signal names change the same way, so that they appear
as identifiers in the generated code as you want. The
selections in this field have the same functions as
described above for #defines, except they apply to
signal names.

M-function If you selected Custom M-function in the Signal
naming field, place the name of the .m file here, with or
without the .m extension. Otherwise, ignore this field.

Templates Code templates A code template organizes all of the generated files that,
primarily, contain functions but not identifiers.

A4

MPF Panes on the Configuration Parameters Dialog Box

MPF Elements on Configuration Parameters Panes (Continued)

Pane

Element

Description

Source file (*.c¢)
template

The source code template organizes C code files. These
include, for example, the main .c or any of the .c
files that contain functions that Real-Time Workshop
Embedded Coder generates for the open model.

Header file (*.h)
template

The header code template organizes the .h file that
includes the prototypes of these functions. (See Source
file (*.c) template just above.)

Data templates

A data template organizes all of the generated files that
contain only identifiers (data), not functions (code).

Source file (*.c)

The source data template organizes the .c file that

template contains definitions of variables of global scope.
Header file (*.h) The header data template organizes the .h file that can
template contain declarations of variables of global scope. (See

Source file (*.c) template just above.)

Custom templates

A custom template is a TLC callback script that allows
you to customize generated code. The supplied (default)
code template is example file process.tlc. You
must uncomment a TLC line, as explained near the top
of the file, to apply the script to generated code. You
can modify example file process.tlc to create your
own custom template. For details, see “Custom File
Processing” in the Real-Time Workshop Embedded
Coder documentation.

A-5

A Referenced Tables

MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description
Data Data definition In this field, you select the .c file where the definitions
Placement of variables of global scope will be located. You can place

these in a single .c file that is separate from the .c files
where the model’s functions are located, if desired.

If you choose Data defined in single separate
source file, the data source template specified in the
Source file (*.c) template field of the Templates
pane (for Data templates) will be used. This template
file organizes the single separate source file. You must
also specify the filename of this single separate source
file itself in the Data definition filename field below.

Or, you can place these definitions in the .c files where
the functions are located. To do this you select Data
defined in source file. In this case, the source
template will not be used. There may be one function

. ¢ file or multiple function .c files, based on the file
partitioning previously selected in Simulink for the
model. If there are multiple files, and you select Data
defined in source file, all of the definitions will be
placed in their respective function files.

If you choose the default Auto, Real-Time Workshop
Embedded Coder determines where the definitions will

be located.
Data definition This field is available only if you selected Data defined
filename in single separate source file in the Data
definition field. Specify here the name of this source
file.

MPF Panes on the Configuration Parameters Dialog Box

MPF Elements on Configuration Parameters Panes (Continued)

Pane

Element

Description

Data declaration

In this field, you select the file where declarations will
be located (extern, typedef and #define statements).
You can place these in a single .h file that is separate
from the . c files where the model’s functions are located,
if desired.

If you choose Data declared in single separate
header file, the data header template specified in the
Header file (*.h) template field of the Templates
pane (for Data templates) will be used. This template
file organizes the single separate header file. You must
also specify the filename of this single separate header
file itself in the Data declaration filename field below.

Or, you can place these declarations in the .c files
where the functions are located. To do this you select
Data declared in source file. In this case, the
data header template will not be used. As mentioned
previously, there may be one function . c file or multiple
function . c files, based on the file partitioning previously
selected in Simulink for the model. If there are multiple
files, and you select Data declared in source file,
all of the declarations will be placed in their respective
function files.

If you choose the default Auto, Real-Time Workshop
Embedded Coder determines where the declarations
will be located.

Data declaration
filename

This field is available only if you selected Data
declared in single separate header file in the
Data declaration field. Specify here the name of this
header file.

A-7

A Referenced Tables

MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description
#include file This field allows you to select the #include file delimiter
delimiter used in those generated files that contain the #include

preprocessor directive for mpt data objects. This applies
the selected delimiter to all mpt data objects, except any
whose delimiter is overridden by the Header file field
on the Model Explorer.

If you select Auto, Real-Time Workshop Embedded
Coder determines the delimiter.

If you select #include "header.h", the
double-quotation delimiter is used.

If you select #include <header.h>, the angle-bracket
delimiter is used.

Module naming In this field, you select whether or not to name

the module. This is used in conjunction with the
Owner field of a data object in the Model Explorer

to constitute what is termed "ownership." For details,
see “Ownership” on page 5-7 and Effects of Ownership
Settings on page A-29.

If you do want to specify the module name, you can
select the convenient Same as model. This avoids
having to type in a name in the Module name field
described below.

Module name This field is available only if you selected User
specified in the Module naming field. Type the
desired module name according to ANSI C/C++
conventions for naming identifiers.

MPF Panes on the Configuration Parameters Dialog Box

MPF Elements on Configuration Parameters Panes (Continued)

Pane

Element

Description

Signal display level

This field allows you to specify whether or not the code
generator declares a signal data object as global data in
the generated code. The number you specify in this field
is relative to the number you specify in the Persistence
level field on the Module Explorer dialog box. The
Signal display level number is for all mpt signal data
objects in the model. The Persistence level number is
for a particular mpt signal data object.

Parameter tune
level

This field allows you to specify whether or not the code
generator declares a parameter data object as tunable
global data in the generated code. The number you
specify in this field is relative to the number you specify
in the Persistence level field on the Module Explorer
dialog box. The Parameter tune level number is

for all mpt parameter data objects in the model. The
Persistence level number is for a particular mpt
parameter data object.

A-9

A Referenced Tables

MPF Template Symbols and Rules

The following tables describe all MPF template symbols and rules for

using these. The location of a symbol in one of the MPF template files
(code_c_template.cgt, code_h_template.cgt, data_c_template.cgt, or
data_h_template.cgt) determines where the items associated with this
symbol are located in the corresponding generated file. The first table
identifies the symbol groups, starting with the parent ("Base") group, followed
by the children in each parent.Template Symbols on page A-12 lists the
symbols in alphabetical order. “Rules for Modifying or Creating a Template”
on page A-16 lists the rules.

Template Symbol Groups

Symbol Group Symbol Names in This Group

Base (Parents) Declarations
Defines
Definitions
Documentation
Enums
Functions
Includes

Types

Declarations ExternalCalibrationLookupiD
ExternalCalibrationLookup2D
ExternalCalibrationScalar

ExternalVariableScalar

Defines LocalDefines

LocalMacros

A-10

MPF Template Symbols and Rules

Template Symbol Groups (Continued)

Symbol Group

Symbol Names in This Group

Definitions

FilescopeCalibrationLookupiD
FilescopeCalibrationLookup2D
FilescopeCalibrationScalar
FilescopeVariableScalar
GlobalCalibrationLookup1D
GlobalCalibrationLookup2D
GlobalCalibrationScalar

GlobalvVariableScalar

Documentation

Abstract

Banner

Created

Creator

Date
Description
FileName
History
LastModificationDate
LastModifiedBy
ModelName
ModelVersion
ModifiedBy
ModifiedComment
ModifiedDate

Modified History

A-11

A

Referenced Tables

A-12

Template Symbol Groups (Continued)

Symbol Group

Symbol Names in This Group

Notes
ToolVersion
Functions CFunctionCode
Types This parent has no children.

Template Symbols

Symbol Name*

Symbol
Group

Symbol
Scope

Symbol Description
(What the symbol puts
in the generated file)

Abstract

Documentation

N/A

User-supplied description of
the model or file. Placed in
the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

Banner

Documentation

N/A

Comments located near top of

the file. Contains information

that includes versions of model
and Real-Time Workshop, and
date file was generated.

CFunctionCode

Functions

File

All of the C/C++ functions.
Must be at the bottom of the
template.

Created

Documentation

N/A

Date when model was created.
From Created on field on
Model Properties dialog box.

Creator

Documentation

N/A

User who created model. From
Created by field on Model
Properties dialog box.

MPF Template Symbols and Rules

Template Symbols (Continued)

Symbol Description

Symbol Symbol | (What the symbol puts
Symbol Name* Group Scope in the generated file)
Date Documentation | N/A Date file was generated. Taken
from computer clock.
Declarations Base Data declaration of any signal
or parameter. For example,
extern real_T globalvar;.
Defines Base File Any necessary #defines of .h
files.
Definitions Base File Data definition of any signal
or parameter.
Description Documentation | N/A Description of model. From
Model description field on
Model Properties dialog box.**
Documentation Base N/A Comments about how to
interpret the generated files
from Real-Time Workshop.
Enums Base File Enumerated data type
definitions.
ExternalCalibrationLookup1D | Declarations External | ***
ExternalCalibrationLookup2D | Declarations External | ***
ExternalCalibrationScalar Declarations External | ***
ExternalVariableScalar Declarations External | ***
FileName Documentation | N/A Name of the generated file.
FilescopeCalibrationLookupiD | Definitions File S
FilescopeCalibrationLookup2D | Definitions File SR
FilescopeCalibrationScalar Definitions File S
FilescopeVariableScalar Definitions File SR
Functions Base File Generated function code.

A-13

A

Referenced Tables

A-14

Template Symbols (Continued)

Symbol Description

Symbol Symbol | (What the symbol puts

Symbol Name* Group Scope in the generated file)

GlobalCalibrationLookupiD Definitions Global Rt

GlobalCalibrationLookup2D Definitions Global SR

GlobalCalibrationScalar Definitions Global Rt

GlobalvariableScalar Definitions Global SR

History Documentation | N/A User-supplied revision history
of the generated files. Placed
in the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

Includes Base File #include preprocessor
directives.

LastModificationDate Documentation | N/A Date when model was last
saved. From Last saved
on field on Model Properties
dialog box.

LastModifiedBy Documentation | N/A User who last saved model.
From Last saved by field on
Model Properties dialog box.

LocalDefines Defines File #define preprocessor
directives from
code-generation data
dictionary.

LocalMacros Defines File C/C++ macros local to the file.

ModelName Documentation | N/A Name of the model.

ModelVersion Documentation | N/A Version number of the

Simulink model.

MPF Template Symbols and Rules

Template Symbols (Continued)

Symbol Name*

Symbol
Group

Symbol
Scope

Symbol Description
(What the symbol puts
in the generated file)

ModifiedBy

Documentation

N/A

Name of user who last
modified the model. From
Model version field on Model
Properties dialog box.

ModifiedComment

Documentation

N/A

Comment user enters in the
Modified Comment field on
the Log Change dialog box.
See “Creating a Model Change
History” in the Simulink
documentation.

ModifiedDate

Documentation

N/A

Date model was last modified
before code was generated.

ModifiedHistory

Documentation

N/A

Text from Modified history
field on Model Properties
dialog box.**

Notes

Documentation

N/A

User-supplied miscellaneous
notes about the model or
generated files. Placed in

the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

ToolVersion

Documentation

N/A

A list of the versions of the
toolboxes used in generating
the code.

Types

Base

Data types of generated code.

A-15

A Referenced Tables

A-16

* All symbol names must be enclosed between %< >. For example,
%<Functions>.

** This symbol can be used to add a comment to the generated files. See
“Adding Global Comments” on page 4-5. The code generator places the
comment in each generated file whose template has this symbol name. The
code generator places the comment at the location that corresponds to where
the symbol name is located in the template file.

*##% The description can be deduced from the symbol name. For example,
GlobalCalibrationScalar is a symbol that identifies a scalar. It contains
data of global scope that you can calibrate .

Rules for Modifying or Creating a Template

The following are the rules for creating any MPF template. “Comparison of a
Template and Its Generated File” on page 2-9 illustrates several of these rules.

1 Place a symbol on a template within the %< > delimiter. For example, the
symbol named Includes should look like this on a template: %<Includes>.
Note that symbol names are case sensitive.

2 Place a symbol on a template where desired. Its location on the template
determines where the item associated with this symbol is located in the
generated file. If no item is associated with it, the symbol is ignored.

3 Place a C/C++ statement outside of the %< > delimiter, and on a different
line than a %< > delimiter, for that statement to appear in the generated
file. For example, #pragma message ("my text") in the template results
in #pragma message ("my text") at the corresponding location in the
generated file. Note that the statement must be compatible with your
C/C++ compiler.

4 Use the .cgt extension for every template filename. ("cgt" stands for code
generation template.)

5 Note that %% $Revision: 1.1.4.10.4.1 $ appears at the top of the
MathWorks supplied templates. This is for internal MathWorks use only. It
does not need to be placed on a user-defined template and does not show in
a generated file.

MPF Template Symbols and Rules

6 Place a comment on the template between /* */ as in standard ANSI C.
This results in /*comment*/ on the generated file.

7 Each MPF template must have all of the Base group symbols, in predefined
order. They are listed in Template Symbol Groups on page A-10. Each
symbol in the Base group is a parent. For example, Declarations is a
parent symbol.

8 Each symbol in a non-Base group is a child. For example, LocalMacros is
a child.

9 Except for Documentation children, all children must be placed after their
parent, before the next parent, and before the Functions symbol.

10 Documentation children can be located before or after their parent in any
order anywhere in the template.

11 If a non-Documentation child is missing from the template, the code
generator places the information associated with this child at its parent
location in the generated file.

12 If a Documentation child is missing from the template, the code generator
omits the information associated with that child from the generated file.

A-17

A Referenced Tables

mpt Parameter and Signal Properties

The following table describes the properties and property values for all
mpt.Parameter and mpt.Signal data objects that appear on the Model
Explorer.

The figure below shows an example of the Model Explorer. When you select an
mpt.Parameter or mpt.Signal data object in the middle pane, its properties
and property values display in the right-most pane.

In the Properties column, the table lists the properties in the order in which
they appear on the Model Explorer. Another table describes the effects that
example changes to property values have on the generated code.

B Model Explorer =|of x|
File Edit Wiew Tools Add Help
D[t maxX[BH<wHfsdod 0m+4R[aarmz A
Search: [y Black Typs x| Type: [Constant | Search
Model Hierarchy Contents of: Base Warkspacs mpt.Signal: A
=[] imuiink oot e [Value | DataTyp|| Datatype: [doubie] Units | =
i WiBase Warkspace double || Dimensions: [1 Complesiy: | auto |
tc f
it auto || Gample time:[1 Sarmple mode:[auto =l
auto Miriirnurn: |-\nf bl airnunn: |\nf
aut
Iniial value:
auto
auo - Code generation optian
2 auto Starags class: [Global (Custom) |
auto Custom attribut
5 auo :
26 aue Memory section: |Defaull J
9 aue Headerfle: |
5 auta Ovwner. |
2 auto Defirition file: |
auto Persistence level. [1
auto
Alizs: | s
Description:
| s | .
2 | || Contents [Search Resuts ECEL] [| DY |
&

A-18

mpt Parameter and Signal Properties

Parameter and Signal Property Values

Class:
Parameter,
Signal, or
Both

Property

Available
Property Values
(* Indicates
Default)

Description

Both

User object
type

*auto

Prenamed and predefined property
sets that are registered in the

sl _customization.m file. (See
“Registering mpt User Object Types” on
page 3-39.) This field is unavailable if
no user object type is registered.

Select auto if this field is available but
you do not want to apply the properties
of a user object type to a selected data
object. The fields on the Model Explorer
are populated with default values.

Any user object type
name listed

Select a user object type name to
apply the properties and values that
you associated with this name in the
sl_customization.m file. The fields on
the Model Explorer are automatically
populated with those values.

Parameter

Value

*0

The data type and numeric value of

the data object. For example, int8(5).
The numeric value is used as an initial
parameter value in the generated code.

Both

Data type

Used to specify the data type for an
mpt.Signal data object, but not for an
mpt.Parameter data object. The data
type for an mpt.Parameter data object
is specified in the Value field above.
See “Working with Data Types” in the
Simulink documentation.

Both

Units

*null

Units of measurement of the signal or
parameter. (Enter text in this field.)

A-19

A Referenced Tables

Parameter and Signal Property Values (Continued)

Class: Available

Parameter, Property Values

Signal, or (* Indicates

Both Property Default) Description

Both Dimensions *-1 The dimension of the signal or
parameter. For a parameter, the
dimension is derived from its value.

Both Complexity *auto Complexity specifies whether the signal

real or parameter is a real or complex
number. Select auto for the code

complex generator to decide. For a parameter,
the complexity is derived from its value.

Signal Sample time *-1 Model or block execution rate.

Signal Sample mode *auto Determines how the signal propagates
through the model. Select auto for the
code generator to decide.

Sample based The signal propagates through the
model one sample at a time.

Frame based The signal propagates through the
model in batches of samples.

Both Minimum *0.0 The minimum value to which the

parameter or signal is expected to be
bound.

Any number within
the minimum range
of the parameter
or signal. (Based
on the data type
and resolution of
the parameter or
signal.)

A-20

mpt Parameter and Signal Properties

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or

Available
Property Values
(* Indicates

Both Property Default) Description
Both Maximum *0.0 Maximum value to which the parameter
or signal is expected to be bound. (Enter
information using a dialog box.)
Code
generation
options
Storage class Note that an auto selection for a storage
class tells Real-Time Workshop to decide
how to declare and store the selected
parameter or signal.
Both Default Real-Time Workshop Embedded Coder
(Custom) decides how to declare the data object.
Both Global Global (Custom) is | Ensures that the code generator
(Custom) the default storage | places no qualifier in the data object’s
class for mpt data declaration.
objects.
Both Memory *Default Memory section allows you to specify
section storage directives for the data object.
Default ensures that the code generator
places no type qualifier and no pragma
statement with the data object’s
declaration.
Parameter MemConst Places the const type qualifier in the
declaration.
Both MemVolatile Places the volatile type qualifier in
the declaration.
Parameter MemConstVolatile | Places the const volatile type

qualifier in the declaration.

A-21

A Referenced Tables

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both

Property

Available
Property Values
(* Indicates
Default)

Description

Both

Header file

Name of the file used to import or export
the data object. This file contains the
declaration (extern) to the data object.

Also, you can specify this header
filename between the double-quotation
or angle-bracket delimiter. You can
specify the delimiter with or without the
.h extension. For example, "object.h"
or "object" has the same effect. For
the selected data object, this overrides
the general delimiter selection in the
#include file delimiter field on the
Configuration Parameters dialog box.

Both

Owner

*Blank

The name of the module that owns this
signal or parameter. This is used to help
determine the ownership of a definition.
For details, see “Ownership” on page 5-7
and Effects of Ownership Settings on
page A-29.

Both

Definition file

*Blank

Name of the file that defines the data
object.

Any valid text string

A-22

mpt Parameter and Signal Properties

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or

Available
Property Values
(* Indicates

Both Property Default) Description
Both Persistence The number you specify is relative to
level Signal display level or Parameter
tune level on the Data Placement
pane of the Configuration Parameters
dialog box. For a signal, allows you
to specify whether or not the code
generator declares the data object as
global data. For a parameter, allows
you to specify whether or not the code
generator declares the data object as
tunable global data. See Signal display
level and Parameter tune level in
MPF Elements on Configuration
Parameters Panes on page A-2.
Both Bitfield Embeds Boolean data in a named bit
(Custom) field.
Struct name Name of the struct into which the
object’s data will be packed.
Parameter Const (Custom) Places the const type qualifier in the
declaration.
Parameter Header file See above.
Parameter Owner See above.
Parameter Definition file See above.
Parameter Persistence See above.
level
Both Volatile Places the volatile type qualifier in
(Custom) the declaration.
Both Header file See above.

A-23

A Referenced Tables

Parameter and Signal Property Values (Continued)

Class: Available

Parameter, Property Values

Signal, or (* Indicates

Both Property Default) Description

Both Owner See above.

Both Definition file See above.

Both Persistence See above.
level

Parameter ConstVolatile Places the const volatile type
(Custom) qualifier in declaration.

Parameter Header file See above.

Parameter Owner See above.

Parameter Definition file See above.

Parameter Persistence See above.
level

Parameter Define Represents parameters with a #define
(Custom) macro.

Parameter Header file See above.

Both ExportToFile Generates global variable definition,
(Custom) and generates a user-specified header

(.h) file that contains the declaration
(extern) to that variable.

Both Memory See above.
section

Both Header file See above.

Both Definition file See above.

A-24

mpt Parameter and Signal Properties

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or

Available
Property Values
(* Indicates

Both Property Default) Description
Both ImportFromFile Includes predefined header files
(Custom) containing global variable declarations,
and places the #include in a
corresponding file. Assumes external
code defines (allocates memory) for the
global variable.

Both Data access *Direct Allows you to specify whether the
identifier that corresponds to the
selected data object stores data of a data
type (Direct) or stores the address of
the data (a pointer).

Both Pointer If you select Pointer, the code generator
places * before the identifier in the
generated code.

Header file See above.

Both Struct Embeds data in a named struct to
(Custom) encapsulate sets of data.

Both Struct name See above.

Signal GetSet Reads (gets) and writes (sets) data using
(Custom) functions.

Signal Header file See above.

Signal Get function Specify the Get function.

Signal Set function Specify the Set function.

A-25

A Referenced Tables

Parameter and Signal Property Values (Continued)

Class: Available
Parameter, Property Values
Signal, or (* Indicates
Both Property Default) Description
Both Alias *null As explained in detail in “Applying
Naming Rules to Identifiers Globally”
on page 3-22, for a Simulink or mpt data
object (identifier), specifying a name
in the Alias field overrides the global
naming rule selection you make on the
Configuration Parameters dialog.
Any valid ANSI
C/C++ variable
name
Both Description *null Text description of the parameter or

signal. Appears as a comment beside
the signal or parameter’s identifier in
the generated code.

Any text string

A-26

mpt Parameter and Signal Properties

Some Examples of the Effect of Property Value Changes on Generated Code

What | noticed when
inspecting the .c/.cpp file

Change | made to property
value settings

What | noticed after
regenerating and
reinspecting the file

Example 1:

Parameter data objects

can be declared or defined
as constants. I know that
the data object GAIN is a
parameter. I want this to

be declared or defined in the
.c file as a variable. But I
notice that GAIN is declared as
a constant by the statement
const real T GAIN = 5.0;.
Also, this statement is in the
constant section of the file.

In the Model Explorer, I clicked
the data object GAIN. I noticed
that the property value for its
Memory section property is set
at MemConst. I changed this to
Default.

I notice two differences. One
is that now GAIN is declared
as a variable with the
statement real T GAIN =
5.0;. The second difference
is that the declaration now
is located in the MemConst
memory section in the .c or
.cpp file.

Example 2:

I notice again the declaration
of GAINin the . c file mentioned
in Example 1. It appears as
real T GAIN = 5.0;. But

I have changed my mind. I
want data object GAIN to be
#define.

I changed the Storage class
selection to Define (Custom).

GAIN is no longer declared
in the .c file as a MemConst
parameter. Rather, it now is
defined as a #define macro
by the code #define GAIN
5.0, and this is located
near the top of the .c file
with the other preprocessor
directives.

A-27

A

Referenced Tables

A-28

Some Examples of the Effect of Property Value Changes on Generated Code (Continued)

What | noticed when
inspecting the .c/.cpp file

Change | made to property
value settings

What | noticed after
regenerating and
reinspecting the file

Example 3:

I changed my mind again
after doing Example 2. I

do want GAIN defined using
the #define preprocessor
directive. But I do not want
to include the #define in this
file. I know it exists in another
file and I want to reference
that file.

On the Model Explorer, I notice
that the property value for the
Header file property is blank.

I changed this to filename.h.

(I chose the ANSI C/C++
double quote mechanism for the
#include, but could have chosen
the angle bracket mechanism.)
Also, it is necessary that I make
the user-defined filename.h
available to the compiler, placing
it either in the system path or
local directory.

The #define GAIN 5.0 is
no longer in this .c file.
Instead, the #include
filename.h code appears as
a preprocessor directive at
the top of the file.

Example 4:

I have one more change

I want to make. Let us

say that we have declared
the data object data_in,

and that its declaration
statement in the .c file reads
real T data_in = 0.0;. 1
want to replace this in all
locations in the .c file with an
alias.

In the Model Explorer, I selected
the data object data_in. I
noticed that the Alias field

is blank. I changed this to
data_in_alias, which I know
is a valid ANSI C/C++ variable

name.

The identifier
data_in_alias now appears
in the .c file everywhere
data_in appeared.

Data Placement Rules and Effects

Data Placement Rules and Effects

The following tables show the effects that example changes to the
interdependent MPF settings have on the generated code. See “Example
Settings” on page 5-9. Data Placement Rules on page A-32 provides a
complete set of data placement rules.

Effects of Ownership Settings

Row Module Naming
Number | Setting Owner Setting Effect*
1 Not specified™* Blank** There is a definition for the selected
data object. The code generator
places this definition in the .c/.cpp
source file that uses it. There is also
an extern declaration for this data
object. The code generator places
this extern declaration in one or
more . h header files, as needed.
2 Not specified®* A name is specified. | Same effect as stated above.
Either Same as model Blank** Same as Row 1.
or User specified is
selected.

4 Either Same as model A name is specified | Same as Row 1.
or User specified is and it is the same
selected, and this name | as that specified
is the same as that in the Module
specified as the Owner naming > Module
property. name field.

5 Either Same as model A name is specified | There is no definition for the
or User specified is but it is different selected data object. However,
selected, and this name from that specified | there is an extern declaration for
is different than that in the Module the object. The extern declaration
specified as the Owner naming > Module | is placed in one or more header
property. name field. files, as needed.

A-29

A Referenced Tables

Example Settings and Resulting Generated Files

* See also “Ownership” on page 5-7.
** Default.

Data Data
Defined Declared | Owner- | Defined | Header
In... In... ship* File** File Generated Files
Example Source file | Source file | Blank Blank Blank .c/.cpp source file
Settings 1
(Rd-Write
Example)
Example Source file | Source file | Name of | Blank Blank .c/.cpp source file
Settings 2 module
(Owner- ship specified
Example)
Example Source file | Source file | Blank Blank Desired | .c/.cpp source file
Settings 3 include . h definition file
(Header File filename
Example) specified.
Example Source file | Source file | Blank Desired Desired | .c/.cpp source file
Settings 4 definition | include .c/.cpp
(Def. File filename | filename | definition file*
Example) specified. | specified.| .h definition file*
Example Single Source file | Blank Blank Blank .c/.cpp source file
Settings 5 separate global .c/.cpp
source file
Example Single Single Blank Blank Blank .c/.cpp source file
Settings 6 separate separate global .c/.cpp
source file | header file global.h

A-30

Data Placement Rules and Effects

Example Settings and Resulting Generated Files (Continued)

Data Data

Defined Declared | Owner- | Defined | Header

In... In... ship* File** File Generated Files
Example Single Single Name of | Blank Blank .c/.cpp source file
Settings 7 separate separate module global.c/.cpp

source file | header file | specified global.h
Example Single Single Blank Blank Desired | .c/.cpp source file
Settings 8 separate separate include | global.c/.cpp

source file | header file filename | global.h

specified.| . h definition file

* "Blank" in ownership setting means Not specified is selected in the

Module naming field on the Data Placement pane, and the Owner field on

the Model Explorer is blank. "Name of module specified" can be a variety of
ownership settings as defined in Effects of Ownership Settings on page A-29.

** The code generator generates a definition .c/.cpp file for every data object
for which you specified a definition filename (unless you selected #DEFINE for

the Memory section field). For example, if you specify the same definition
filename for all data objects, only one definition .c/.cpp file is generated.
The code generator places declarations in model.h by default, unless you
specify Data declared in single separate header file for the Data

declaration option on the Real-Time Workshop > Data Placement pane

of the Configuration Parameter dialog box. If you select that data placement
option, the code generator places declarations in global.h. If you specify a
definition filename for each data object, the code generator generates one

definition .c/.cpp file for each data object and places declarations in model.h

by default, unless you specify Data declared in single separate header

file for Data declaration. If you select that data placement option, the code

generator places declarations in global.h.

A-31

A

Referenced Tables

A-32

Note If you generate C++ rather than C code, the .c files listed in the
following table will be .cpp files.

Data Placement Rules

Global Override Settings for
Settings: Specific Data Object: Results in Generated Files:
Where |Where

Storage Class Data |Data | Def. Header Data Data Dec.

Setting Def. |Dec. File Owner File Def. Is Dec. Is |Inclusion

mpt or Simulink Noncustom Storage Classes:

auto N/A N/A N/A N/A N/A Note 12 |model.h |Note 1

Exported-Global | N/A N/A N/A N/A N/A model.c |model.h [Note 1l

Imported- - N/A N/A N/A N/A N/A None. model - |Note 2

Extern, External |private.h

Imported- -

Extern-Pointer

Simulink-Global | N/A N/A N/A N/A N/A Note 13 |model.h |Notel

mpt or Simulink Custom Storage Class: Imported Data:

Imported- - D/C D/C D/C N/A null None model - |Note 3

FromFile private.h

Imported- - D/C D/C D/C N/A hdr.h None model - |Note 4

FromFile private.h

Simulink Custom Storage Class: #define Data:

Define D/C D/C N/A N/A N/A N/A #define, |Note 5
model.h

mpt Custom Storage Class: #define Data:

Define D/C D/C N/A N/A null N/A #define, |Note 5
model.h

Define D/C D/C N/A N/A hdr.h N/A #define, |Note 6
model.h

mpt or Simulink Custom Storage Class: GetSet:

GetSet D/C D/C N/A N/A hdr.h N/A External |Note 4
hdr.h

mpt or Simulink Custom Storage Class: Bitfield, Struct:

Data Placement Rules and Effects

Data Placement Rules (Continued)

Global Override Settings for
Settings: Specific Data Obiject: Results in Generated Files:
Where |(Where

Storage Class |Data |Data | Def. Header |Data Data Dec.
Setting Def. |Dec. File Owner File Def. Is |Dec. Is | Inclusion
Bitfield, Struct |D/C D/C N/A N/A N/A model.c |model.h |[Note 7
mpt Custom Storage Class: Global, Const, ConstVolatile, Volatile:
Global, Const, auto |auto |null null or |null model.c |model.h |Note 1
Const-Volatile, locally
Volatile owned
Global, Const, src auto |null null or |null src.c model.h |Note 1
Const-Volatile, locally
Volatile owned
Global, Const, sep auto |null null or |null glb.c model.h |Note 1
Const-Volatile, locally
Volatile owned
Global, Const, |auto |[src null null or |null model.c |src.c Note 8
Const-Volatile, locally
Volatile owned
Global, Const, src src null null or |null src.c src.c Note 8
Const-Volatile, locally
Volatile owned
Global, Const, sep src null null or |null glb.c src.c Note 8
Const-Volatile, locally
Volatile owned
Global, Const, auto |sep null null or |null model.c |glb.h Note 9
Const-Volatile, locally
Volatile owned
Global, Const, src sep null null or |null src.c glb.h Note 9
Const-Volatile, locally
Volatile owned
Global, Const, sep sep null null or |null glb.c glb.h Note 9
Const-Volatile, locally
Volatile owned

A-33

A

Referenced Tables

A-34

Data Placement Rules (Continued)

Global Override Settings for
Settings: Specific Data Obiject: Results in Generated Files:
Where |(Where
Storage Class |Data |Data | Def. Header |Data Data Dec.
Setting Def. |Dec. File Owner File Def. Is |Dec. Is | Inclusion
Global, Const, D/C D/C data.c |D/C null data.c |See Note |Note 10
Const-Volatile, 10.
Volatile
Global, Const, D/C D/C data.c |D/C hdr.h data.c |hdr.h Note 11
Const-Volatile,
Volatile
Global, Const, auto |D/C null null hdr.h model.c |hdr.h Note 11
Const-Volatile,
Volatile
Global, Const, src D/C null null hdr.h src.c hdr.h Note 11
Const-Volatile,
Volatile
Global, Const, sep D/C null null hdr.h glb.c hdr.h Note 11
Const-Volatile,
Volatile
Global, Const, D/C auto |null External |null External |[model.h |Notel
Const-Volatile, owner user--
Volatile supplied
file
Global, Const, D/C src null External |null External |src.c Note 8
Const-Volatile, owner user--
Volatile supplied
file
Global, Const, D/C sep null External |null External |glb.h Note 9
Const-Volatile, owner user--
Volatile supplied
file
Global, Const, D/C D/C null External |header.h|External |hdr.h Note 11
Const-Volatile, owner user--
Volatile supplied
file

Data Placement Rules and Effects

Data Placement Rules (Continued)

Global Override Settings for
Settings: Specific Data Obiject: Results in Generated Files:
Where |Where
Storage Class |Data |Data | Def. Header |Data Data Dec.
Setting Def. |Dec. File Owner File Def. Is |Dec. Is | Inclusion
Global, Const, D/C D/C null External |header.h|External |hdr.h Note 11
Const-Volatile, owner user--
Volatile supplied
file
mpt Custom Storage Class: Exported Data:
ExportTo-File auto |auto |null null null model.c |model.h |Note 1
ExportTo-File src auto |null null null src.c model.h |Note 1
ExportTo-File sep auto |null null null glb.c model.h |Note 1
ExportTo-File auto |src null null null model.c |src.c Note 8
ExportTo-File src src null null null src.c src.c Note 8
ExportTo-File sep src null null null glb.c src.c Note 8
ExportTo-File auto |sep null null null model.c |glb.h Note 9
ExportTo-File src sep null null null src.c glb.h Note 9
ExportTo-File sep sep null null null glb.c glb.h Note 9
ExportTo-File D/C D/C data.c |null null data.c |See Note |[Note 10
10.

ExportTo-File D/C D/C data.c |null hdr.h model.c |hdr.h Note 11
ExportTo-File auto |D/C null null hdr.h src.c hdr.h Note 11
ExportTo-File sep D/C null null hdr.h glb.c hdr.h Note 11
Simulink Custom Storage Class: Default, Const, ConstVolatile, Volatile:
Default, Const, |auto |auto |N/A N/A N/A model.c |model.h |Notel
Const-Volatile,
Volatile
Default, Const, |[src auto |N/A N/A N/A src.c model.h |Note 1

Const-Volatile,
Volatile

A-35

A Referenced Tables

A-36

Data Placement Rules (Continued)

Global Override Settings for
Settings: Specific Data Obiject: Results in Generated Files:
Where |Where

Storage Class |Data |Data | Def. Header |Data Data Dec.
Setting Def. |Dec. File Owner File Def. Is |Dec. Is | Inclusion
Default, Const, |[sep auto |N/A N/A N/A glb.c model.h |Note 1
Const-Volatile,
Volatile
Default, Const, |auto |src N/A N/A N/A model.c |src.c Note 8
Const-Volatile,
Volatile
Default, Const, |src src N/A N/A N/A src.c src.c Note 8
Const-Volatile,
Volatile
Default, Const, |[sep src N/A N/A N/A glb.c src.c Note 8
Const-Volatile,
Volatile
Default, Const, |auto |sep N/A N/A N/A model.c |glb.h Note 9
Const-Volatile,
Volatile
Default, Const, |[src sep N/A N/A N/A src.c glb.h Note 9
Const-Volatile,
Volatile
Default, Const, |[sep sep N/A N/A N/A glb.c glb.h Note 9
Const-Volatile,
Volatile
Simulink Custom Storage Class: Exported Data:
ExportTo-File auto |auto |N/A N/A null model.c |model.h |Notel
ExportTo-File src auto |N/A N/A null src.c model.h |Note 1
ExportTo-File sep auto |N/A N/A null glb.c model.h |Note 1
ExportTo-File auto |src N/A N/A null model.c |src.c Note 8
ExportTo-File src src N/A N/A null src.c src.c Note 8
ExportTo-File sep src N/A N/A null glb.c src.c Note 8
ExportTo-File auto |sep N/A N/A null model.c |glb.h Note 9

Data Placement Rules and Effects

Data Placement Rules (Continued)

Global Override Settings for
Settings: Specific Data Obiject: Results in Generated Files:
Where |Where

Storage Class |Data |Data | Def. Header |Data Data Dec.
Setting Def. |Dec. File Owner File Def. Is |Dec. Is | Inclusion
ExportTo-File src sep N/A N/A null src.c glb.h Note 9
ExportTo-File sep sep N/A N/A null glb.c glb.h Note 9
ExportTo-File auto |D/C N/A N/A hdr.h model.c |hdr.h Note 11
ExportTo-File src D/C N/A N/A hdr.h src.c hdr.h Note 11
ExportTo-File sep D/C N/A N/A hdr.h glb.c hdr.h Note 11

Notes

In the previous table:

® A Declaration Inclusion Approach is a file in which the header file that

contains the data declarations is included.

e D/C stands for don’t care.

® Dec stands for declaration.

® Def stands for definition.

® gbl stands for global.

® hdr stands for header.

® N/A stands for not applicable.
* null stands for field is blank.

® sep stands for separate.

Note 1: model.h is included directly in all source files.

Note 2: model_private.h is included directly in all source files.

Note 3: extern is included in model_private.h, which is in source.c.

A-37

A Referenced Tables

A-38

Note 4: header.h is included in model private.h, which is in source.c.
Note 5: model.h is included directly in all source files that use #define.

Note 6: header.h is included in model.h, which is in source files that use
#define.

Note 7: model.h is included in all source. c files.

Note 8: extern is inlined in source files where data is used.

Note 9: global.h is included in model.h, which is in all source files.

Note 10: When you specify a definition filename for a data object, no header
file is generated for that data object. The code generator declares the data
object according to the data placement priorities.

Note 11: header.h is included in model. h, which is in all source files.

Note 12: Signal: Either not defined because it is expression folded, or local
data, or defined in a structure in model.c, all depending on model’s code
generation settings. Parameter: Either inlined in the code, or defined in

model data.c.

Note 13: Signal: In a structure that is defined in model.c. Parameter: In a
structure that is defined in model_data.c.

A

additional options
adding custom comments 4-3
delimiter for all #includes 4-2
introduction 4-1

Alias A-26

attributes 3-4

Bitfield (Custom) A-23
Build button 2-7

C

changing identifier names 3-22
changing organization of generated file 2-2
classes 3-4
Code generation options A-21
code template 2-2
code_c_ template.cgt 2-2
code_h_ template.cgt 2-2
comments
adding custom 4-3
adding global 4-5
Complexity A-20
Const (Custom) A-23
ConstVolatile (Custom) A-24
creating a data dictionary 3-5
custom comments 4-3
Custom comments (MPT objects only) A-2
Custom comments function A-2
custom template 2-3

D

daexplr command 3-9

Data access A-25

Data declaration A-7

Data declaration filename A-7

Data definition A-6
Data definition filename A-6
data dictionary 3-3
introduction 3-3
See also data objects
data object wizard 3-5
data objects
adding missing 3-5
naming rules
changing all #defines 3-24
changing all parameter names 3-25
changing all signal names 3-26
properties A-19
setting property values 3-9
wizard 3-5
data template 2-3
Data type property A-19
data types
creating 3-27
data_c_template.cgt 2-2
data_h_template.cgt 2-2
dataobjectwizard 3-7
declaring versus defining 1-3
Default (Custom) storage class A-21
Define (Custom) A-24
#define naming A-2
#defines
changing all 3-24
defining all objects in separate file 1-15
defining one object in its own file 1-16
Definition file A-22
Definition File priority 5-7
Description A-26
Dialog boxes
Configuration Parameters 1-6
Model Explorer 3-9
Dimensions A-20
Direct A-25
DocBlock 4-5

Index-1

Index

E specifying delimiter 4-2 A-8
ert_code_template. cgt 2-2 Include hyperlinks to model 2-7
example file process.tlc 2-2 inserting comment into generated file 1-21
ExportToFile (Custom) A-24 inserting custom comments 4-3

external data dictionary inserting global comments 4-5

importing data objects from 3-19

L
F Launch report after code generation
File placement completes 2-7
introduction 5-2
settings 5-2 M

Frame based A-20 M-functions

#define naming 3-24
G parameter naming 3-25
signal naming 3-26

Generate code only 2-7
Maximum property A-21

generate code versus build 2-7

Generated Source Files 2-7 MemConst A-21
Get function A-25 MemConstVolatile A-21
GetSet (Custom) A-25 Memory section A-21
Global (Custom) storage class A-21 MemVolatile A-21
global comments Minimum property A-20
using DocBlock 4-5 Model Explorer
using Simulink annotation 4-7 parameter and signal properties A-19

using sorted notes 4-8 Module name A-8
using Stateflow note 4-8 Module naming A-8

Global priority 5-6 MPF
basic tutorial 1-8

general operations and specific

H overrides 1-5
Header file A-22 introduction 1-2
Header file (*.h) template A-5 settings 1-6
Header File priority 5-7 when use 1-4
HTML report 2-7
N
1 naming rules
Ignore custom storage classes A-2 applying globally 3-22
ImportFromFile (Custom) A-25 changing all #defines 3-24
#include changing all parameter names 3-25

Index-2

Index

changing all signal names 3-26

o

Owner A-22
ownership
effects of settings 5-7
explanation 5-7
Ownership priority 5-7

P

package 3-4
Parameter class 3-4
parameter names
changing all 3-25
Parameter naming A-4
Parameter tune level A-9
Persistence level A-23
Pointer A-25
preexisting template 2-5
priority and usage 5-3
Definition File priority 5-7
Global priority 5-6
Header File priority 5-7
introduction 5-3
Ownership priority 5-7
Read-Write priority 5-4
See also interdependent settings
property values
descriptions 3-3 A-19
setting 3-9

Read-Write priority 5-4
Real-Time Workshop Report 1-14
rtwdemo_mpf.mdl 1-8

S

Sample based A-20
Sample mode A-20
Sample time A-20

Set function A-25
Signal class 3-4

Signal display level A-9
signal names

changing all 3-26

Signal naming A-4

Simulink annotation 4-7

Simulink data object descriptions A-2
sorted notes 4-8

Source file (*.c) template A-5
Stateflow note 4-8

Storage class A-21

Struct (Custom) A-25

Struct name A-23

symbols for templates

T

alphabetical list A-12

templates

creating new 2-8

editing 2-8

example with generated file 2-9
introduction 2-2

rules for creating or modifying A-16
selecting preexisting 2-5

symbols A-12

tutorial

changing identifier names 1-17

changing organization of generated
file 1-19

creating a data dictionary 1-8

defining all objects in separate file 1-15
defining one object in its own file 1-16

inserting comment 1-21

Index-3

Index

U Volatile (Custom) A-23
Units A-19
User data type 3-27 W

User object type A-19 wizard
data object 3-5
\"

Value A-19

Index-4

	toc
	Getting Started
	What Is MPF?
	When Do I Need to Use MPF?
	MPF General Operations and Specific Overrides
	MPF Settings
	Basic Tutorial
	Creating a Data Dictionary for a Model
	Using the Data Object Wizard
	Inspect the Data Dictionary
	Generate and Inspect Code

	Defining All Global Data Objects in a Separate File
	Defining a Specific Global Data Object in Its Own File
	Changing Names of Identifiers
	Changing the Organization of a Generated File
	Inserting a Comment into Generated Files

	Selecting the Desired MPF Procedure

	Selecting and Defining Templates
	Overview of Templates
	Selecting Preexisting Templates
	Generating Code and Inspecting Files

	Defining Templates
	Comparison of a Template and Its Generated File
	Template and Generated File

	Managing the Data Dictionary
	Overview of the Data Dictionary
	Creating Simulink and mpt Data Objects
	Creating Data Objects with Data Object Wizard
	Creating Simulink Data Objects
	Creating mpt Data Objects, Setting Property Values, and Generati

	Comparing Simulink and mpt Data Objects
	Signal and Parameter Properties
	Configuration Options
	Generated Code

	Creating Data Objects Based on an External Data Dictionary
	Manually Creating Objects to Represent External Data
	Automatically Creating Objects to Represent External Data

	Saving and Loading Data Objects
	Applying Naming Rules to Identifiers Globally
	Defining Rules That Change All #defines
	Defining Rules That Change All Parameter Names
	Defining Rules That Change All Signal Names

	Creating User Data Types
	Registering User Data Types Using sl_customization.m
	Example User Data Type Customization Using sl_customization.m
	Example 1: sl_customization.m for User Data Type Customizations

	Selecting User Data Types for Signals and Parameters
	Selecting User Data Types for Simulink Signals
	Selecting User Data Types for Simulink Parameters

	Registering mpt User Object Types
	Registering mpt User Object Types Using sl_customization.m
	Example mpt User Object Type Customization Using sl_customizatio
	Example 2: sl_customization.m for mpt Object Type Customizations

	Replacing Built-In Data Type Names in Generated Code
	Example 3: Generated Code with real_T Built-In Data Type
	Example 4: Generated Code with FLOAT64 Replacement Data Type
	Data Type Replacement Limitations

	Customizing Data Object Wizard User Packages
	Registering Data Object Wizard User Packages Using sl_customizat
	Example Data Object Wizard User Package Customization Using sl_c
	Example 5: sl_customization.m for DOW User Package Customization

	Customizing with Additional Options
	Ensuring Delimiter Is Specified for All #Includes
	Adding Custom Comments
	Adding Global Comments
	Using a Simulink DocBlock to Add the Comment
	Using a Simulink Annotation to Add the Comment
	Using a Stateflow Note to Add the Comment
	Using Sorted Notes to Add Comments

	Selecting Persistence Level for Signals and Parameters

	Managing File Placement of Data Definitions and Declarations
	Overview of File Placement
	Priority and Usage
	Read-Write Priority
	The Generated Files
	Settings for Read-Write Priority

	Global Priority
	Remaining Priorities
	Ownership
	The Memory Section Setting

	Data Placement Rules
	Example Settings
	Read-Write Example
	Ownership Example
	Header File Example
	Definition File Example

	Referenced Tables
	MPF Panes on the Configuration Parameters Dialog Box
	MPF Template Symbols and Rules
	Rules for Modifying or Creating a Template

	mpt Parameter and Signal Properties
	Data Placement Rules and Effects
	Notes

	Index

	tables
	MPF Settings
	Generated Files and Templates That Organize Them
	How the Template Affects Code Generation
	Naming Rules and Alias Override (Global Change of Force Lower Ca
	MPF Elements on Configuration Parameters Panes
	Template Symbol Groups
	Template Symbols
	Parameter and Signal Property Values
	Some Examples of the Effect of Property Value Changes on Generat
	Effects of Ownership Settings
	Example Settings and Resulting Generated Files
	Data Placement Rules

